Expression, Stabilities, and NMR Studies of Hydration of Recombinant Variants of the DNA Binding Domain of Phage 434 Repressor

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH

for the degree of
Doctor of Natural Sciences

presented by

Hideo Iwai

M.Sc. University of Tokyo, Japan

born on May 8, 1968
citizen of Japan

accepted on the recommendation of
Prof. Dr. Kurt Wüthrich, Referent
Prof. Dr. Rudolf Glockshuber, Korreferent
Dr. Gerhard Wider, Korreferent

1998
Acknowledgment

I wish to acknowledge my thesis advisor Prof. Kurt Wüthrich for giving me this great opportunity to work in his outstanding group and for his guidance. It was a marvellous experience.

I thank Prof. Rudolf Glockshuber and Dr. Gerhard Wider for accepting to be co-examiners of this thesis.

I would like to specially thank PD Dr. Walter Sidler for his support.

I thank the numerous co-workers in the Wüthrich group for their helps, for collaboration, and for many stimulating discussions. In particular I would like to thank: Dr. Walfrido Antuch, Ruedi Baumann, Prof. Martin Billiter, PD Dr. René Brunisholz, Dr. Fred Damberger, César Fernández, Dr. Gerhard Frank, Dr. Peter Güntert, Dr. Chi-yen King, Dr. Reto Koradi, Dr. Francisco López García, Dr. Peter Luginbühl, Dr. Anders Öhman, Dr. Maurizio Pellecchia, Dr. Gregg Siegal, Dr. Alexander Sobol, Dr. Thomas Szyperski, Dr. Ralf Zahn. I also thank many co-workers in the institute for their help and stimulating discussions.

I would like to thank specially to Prof. Yoji Arata and Prof. Ichio Shimada for inviting me to the field of biomolecular NMR and for their enormous and continuous supports and their encouragements.

I would like to thank the Japan Society for the promotion of the science for the financial support of part of my study.

I would like to thank my friends for their supports, and finally I thank my parents for their supports and understanding.

This thesis is dedicated to the memory of my two grandmothers and PD Dr. Walter Sidler, who died during this dissertation.
1. **Summary** .. 1

2. **Introduction** .. 5

3. **Hydration study of dh434(0–63) by NMR spectroscopy** . 16
 3.1. Introduction ... 16
 3.2. Detection of surface hydration water by NMR spectroscopy 16
 3.3. Protein design for the hydration study .. 17
 3.4. Discussion .. 31
 3.5. Conclusions and outlook ... 42

4. **Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)** ... 46
 4.1. Introduction ... 46
 4.2. Description of the expression system .. 46
 4.3. Methods for mutagenesis .. 47
 4.4. Preparation of a chimeric DNA binding domain of 434 repressor and P22c2 repressor ... 52
 4.5. Preparation of des-hydroxyl 434(0–63) ... 55
 4.6. Construction, expression, and purification of the DNA binding do-
 main of P22c2 repressor (5–68) ... 64
 4.7. Overexpression and purification of an unstable 434 variant, [E35Q]-
 434(1–63) ... 66
 4.8. Materials .. 70

5. **Stabilities of variants of the DNA binding domain of phage 434 repressor** .. 71
 5.1. Thermal denaturation ... 71
 5.2. Chemical denaturation .. 76
 5.3. Discussion .. 78

6. **Structure determination and Characterization of dh434(0–63) by NMR** ... 82
 6.1. 1H resonance assignments of dh434(0–63) and secondary structure
determination .. 82
 6.2. Solution structures of dh434(0–63) ... 85
 6.3. Comparison between dh434(0–63), 434(1–63), and P22c2(1–76) 91
6.4. 15N relaxation measurements of dh434(0–63) 104
6.5. H/D exchange rates of dh434(0–63) and 434(1–63) 107
6.6. 13C and 15N resonance assignments of dh434(0–63) 109
6.7. Stereospecific assignments of methyl groups by fractionally 10% 13C labelling ... 115
6.8. Empirical correlation between 13C$_\gamma$ chemical shifts and conformations in valines. ... 117
6.9. Summary of Chapter 6 ... 122

7. NMR techniques .. 123
7.1. Pulse scheme for 'artifact-free' water-protein NOE s detection ... 123
7.2. The 2D NMR Experiments H(C)CO$_2$ and HCCO$_2$ 129

8. References .. 133

9. APPENDICES .. 145

Curriculum vitae .. 153
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D,2D,3D</td>
<td>one, two, three-dimensional</td>
</tr>
<tr>
<td>2QF</td>
<td>two-quantum filtered</td>
</tr>
<tr>
<td>434(1–63)</td>
<td>N-terminal 63-residue DNA-binding domain of the 434 repressor</td>
</tr>
<tr>
<td>434(1–69)</td>
<td>N-terminal 69-residue DNA-binding domain of the 434 repressor</td>
</tr>
<tr>
<td>BPTI</td>
<td>bovine pancreatic trypsin inhibitor</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>COSY</td>
<td>2D correlation spectroscopy</td>
</tr>
<tr>
<td>CPMG</td>
<td>Carr-Purcell-Meiboom-Gill</td>
</tr>
<tr>
<td>CW</td>
<td>continuous wave</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>ct</td>
<td>constant time</td>
</tr>
<tr>
<td>dh434(0–63)</td>
<td>des-hydroxyl 434(0–63)</td>
</tr>
<tr>
<td>DSS</td>
<td>2,2-dimethyl-2-silapentane-5-sulfonate</td>
</tr>
<tr>
<td>E.COSY</td>
<td>2D exclusive correlation spectroscopy</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia Coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single-quantum correlation</td>
</tr>
<tr>
<td>GdmCl</td>
<td>Guanidium Chloride</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser enhancement</td>
</tr>
<tr>
<td>NOESY</td>
<td>2D NOE spectroscopy</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>P22c2(1–76)</td>
<td>N-terminal 76-residue DNA-binding domain of the P22c2 repressor</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>REDAC</td>
<td>redundant dihedral angle constraints</td>
</tr>
<tr>
<td>rf</td>
<td>radio-frequency</td>
</tr>
<tr>
<td>RMSD</td>
<td>root mean square deviation</td>
</tr>
<tr>
<td>ROE</td>
<td>nuclear Overhauser enhancement in the rotating frame</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TMS</td>
<td>tetramethylsilane</td>
</tr>
<tr>
<td>TOCSY</td>
<td>2D total correlation spectroscopy</td>
</tr>
<tr>
<td>TPPI</td>
<td>time-proportional phase incrementation</td>
</tr>
</tbody>
</table>
1. Summary

Water is ubiquitous in biological processes and plays essential roles in the hydrophobic effect, in protein stability, protein folding, molecular association and protein functions. NMR spectroscopy and diffraction methods with single crystals by x-rays and neutrons are the only methods which can provide the locations of water molecules at atomic resolution. This dissertation describes the characterization of the hydration shell of a protein by combination of NMR spectroscopy and protein engineering.

Inherent difficulties in the study of the surface hydration of a protein by NMR spectroscopy with detection of NOEs originates from the fact that NMR spectroscopy can not experimentally separate NOEs due to long-lived water molecules from NOEs via chemical exchange with water of rapidly exchanging labile protons such as hydroxyl protons. Moreover, NOEs from long-lived waters or chemical exchange may conceal weak signals from surface hydration water molecules. In order to overcome such inherent difficulties for the unambiguous identification of water molecules, protein engineering was applied to remove the majority of interfering residues (Chapter 4). The DNA binding domain of the 434 repressor, 434(1–63), was chosen as a model protein because no internal water molecules were found either in the crystal or the NMR structure, and it is soluble up to 20 mM in aqueous solution and can be efficiently expressed and purified from an E.coli expression system. A new variant of 434(1–63) was designed for the hydration studies, des-hydroxyl 434(0–63), or short dh434(0–63), which contains no hydroxyl groups.

In the course of the construction of dh434(0–63), several other variants of 434(1–63) and the homologous DNA binding domain of phage P22c2, P22c2(1–76), were constructed. In Chapter 5 the stabilities of these variants are characterized. Interestingly a chimeric protein from parts of 434(1–63) and parts of P22c2(1–76) was found to be significantly more stable than either 434(1–63) or P22c2(5–68). dh434(0–63) was derived from this hyper-stable chimeric protein.
The characterization by NMR spectroscopy revealed that the newly designed dh434(0–63) has a nearly identical backbone conformation to that of 434(1–63) (Chapter 6). For the hydration studies of this protein, it was necessary to optimize the pulse schemes for detection of water-protein interactions at high magnetic fields in order to obtain artifact-free spectra (Chapter 7). Following optimization of both the protein and the NMR experiments, nearly the complete surface of the protein could be characterized.

Protons showing either a positive NOE and a positive ROE, or no NOE and a positive ROE, which is indicative of short-lived water molecules with residence time of less than ~300 psec, were found to cover 88% of the surface, i.e., nearly the entire surface of the protein is covered with highly mobile water.

There remains some ambiguity in the characterization of longer-lived water molecules, but there are indications that the surface structure of the protein is a more important factor than the amino acid type in the determination of the residence times of water molecules, because no clear-cut difference could be detected between the hydration of polar and non-polar amino acids, whereas the presence of longer-lived water molecules near surface cavities was indicated.
Zusammenfassung

Wasser ist allgegenwärtig in biologischen Vorgängen und spielt eine entscheidende Rolle für den hydrophoben Effekt, die Stabilität, Faltung und Funktion von Proteinen sowie für die molekulare Erkennung. NMR-Spektroskopie und die Streuung von Röntgen- oder Neutronenstrahlen an Einkristallen sind die einzigen Methoden, die die Position von Wassermolekülen mit atomarer Auflösung zu liefern vermögen. Diese Dissertation präsentiert die Charakterisierung der Hydratationschale eines Proteins mit Hilfe von NMR Spektroskopie und Protein Engineering.

Die Untersuchung der Hydratisierung der Oberfläche eines Proteins mit Hilfe von NMR-Spektroskopie wird dadurch erschwert, daß NOEs zu langlebigen Wassermolekülen experimentell nicht von NOEs unterschieden werden können, die durch chemischen Austausch von labilen Wasserstoffatomen, zum Beispiel Hydroxylprotonen, mit Wasser zustande kommen. Außerdem können NOEs, die von langlebigem Wasser oder chemischem Austausch herrühren, schwache Signale von Oberflächenhydratisierungswassermolekülen verdecken. Um diese grundlegenden Schwierigkeiten bei der eindeutigen Identifikation von Wassermolekülen zu umgehen, wurden die störenden Aminosäurereste mit Methoden des Protein Engineering entfernt (Kapitel 4). Die DNA-bindende Domäne des 434-Repressors, 434(1–63), wurde als Modellsystem gewählt, weil einerseits weder in der Kristall- noch in der NMR-Struktur interne Wassermoleküle gefunden wurden und andererseits das Protein bis zu einer Konzentration von 20 mM in Wasser löslich ist und mit Hilfe eines E.coli Expressionssystems effizient hergestellt und gereinigt werden kann. Für die Hydratisierungsstudien wurde eine neue Variante von 434(1–63) hergestellt, des-hydroxyl 434(0–63), kurz dh434(0–63), die keine Hydroxylgruppen enthält.

In Verlauf des Herstellung von dh434(0–63) wurden verschiedene andere Varianten von 434(1–63) und der homologen DNA-bindenden Domäne des Phagen P22c2, P22c2(1–76), konstruiert. In Kapitel 5 werden die Stabilitäten dieser Varianten charakterisiert. Interessanterweise erwies sich ein chimäres Protein, kombiniert aus Teilen von 434(1–63) und P22c2(1–76) als signifikant stabiler als sowohl 434(1–63) als auch P22c2(5–68). dh434(0–63) wurde von diesem hyperstabilen chi-
1. Summary

mären Protein abgeleitet.

Die Untersuchung mit Hilfe der NMR-Spektroskopie zeigte für dh434(0–63) eine fast identische Rückgratskonformation wie für 434(1–63) (Kapitel 6). Für die Hydratisierungsstudien an diesem Protein mußten die Pulssequenzen zur Detektion von Wasser-Protein Wechselwirkungen bei hohen Magnetfeldern optimiert werden, um artefaktfreie Spektren zu erhalten (Kapitel 7). Nach der Optimierung des Proteins und der NMR Experimente konnte nahezu die gesamte Oberfläche des Proteins charakterisiert werden.

Auf 88% der Proteinoberfläche wurden Protonen gefunden, die entweder einen positiven NOE und einen positiven ROE, oder keinen NOE und einen positiven ROE zeigten, was kurzlebige Wassermoleküle mit einer Kontaktlebensdauer von weniger als ~300 psec anzeigt, d.h. fast die ganze Proteinoberfläche ist von hochmobilen Wassermolekülen bedeckt.

2. Introduction

Water is the ubiquitous solvent for biological systems. Despite its simple chemical structure, water is a particularly complex solvent and an excellent solvent for a wide variety of solute molecules and ions, and for suspending colloidal particles and biological molecules such as proteins, DNA, viruses, and cells. The importance of water has long been appreciated in a wide range of fields and extensive studies of water have been performed by experimentalists and theorists (Eisenberg & Kauzmann, 1969; Ben-Naim, 1974; Franks, 1983; Ruplay & Careri, 1991; Weshhof, 1993; Gregory, 1995). However, water is still a mysterious liquid and in spite of much effort very little is known about the detailed structure and dynamics of water molecules in particular at the macromolecular interfaces. Because of the lack of knowledge about the detailed structure of water, water structure has conveniently been used for explaining unexpected experimental results, for example, “polywater” or “memory of water” (Russeau et al., 1971; Davenas et al., 1988; Benveniste et al., 1988, 1991, 1994).

The hydrophobic interaction

The hydrophobic interaction is one of the forces caused by solvation effects. The hydrophobic interaction is generally the entropic driving force that tends to bring together two non-polar groups in aqueous solution (Tanford, 1980). It is significantly temperature sensitive and can be modulated by changing the properties of the solvent, for example by adding ions. The hydrophobic effect is generally accepted as an important driving force in many process such as protein folding, protein-protein interaction, protein stability, and enzyme-ligand interaction. However, the molecular origin of the hydrophobic interaction itself is still unclear and for example protein denaturation with increasing temperature appears to be contradictory because the entropic force, i.e. hydrophobic interaction should increase with an increase in temperature. The entropic consideration of the hydrophobic effect leads to the concept
of the “iceberg”, where water molecules around hydrophobic sites are ordered, structured, or “frozen” to decrease the entropy, as suggested by Frank & Evans (1945). The “iceberg” concept is also applied to proteins (Klotz, 1958). The concept of “iceberg” is often extended to the “hydration shell” on the protein surface, which is an old idea of water structure, envisaging a layer of water molecules surrounding molecules and particles, which provides a protective barrier against the approach of two hydrophilic surfaces or groups. This idea has long been used for the explanation of the molecular mechanism of the effect of ions and cosolute on protein stability (Collins & Washabaugh, 1985; Timasheff & Arakawa, 1989). X-ray diffraction has supported these concepts of “iceberg”, ordered water molecules, or “frozen water molecules” around non-polar groups by the observation of ordered water molecules in small compounds and in proteins (Saenger, 1987; Baker et al., 1987; Teeter, 1984; Teeter et al., 1993; Kumaraswamy et al., 1996). However, there are only a few cases in which ordered water molecules at a hydrophobic surface have been observed despite thousands of crystal structures of proteins, which have been solved up to now (Protein Data Bank, Bernstein et al., 1977). The picture of a hydration shell thus provided by diffraction methods and the concept of ordered water have suppressed a crucial aspect of the hydration in proteins, namely, its dynamics. It is worth noting that so far there is no clear experimental evidence that water molecules around non-polar side chains are more ordered than around polar residues for proteins in solution. Difference of water structures around polar and non-polar side chains at atomic resolution is of special interest.

Protein stability

The stability of the native structure of a protein is maintained by a delicate energy balance. This is manifested by the fact that only small perturbations in a structure such as single point mutations may result in large changes in stability (for example, see Chapter 5). It has also long been known that some cosolutes such as urea and guanidium chloride break the balance denaturing the native structure and that different salts and cosolutes effect the stability and solubility of proteins (Kauzmann, 1959). The different effects of ions on proteins were systematically summarized more than one hundred years ago in the Hofmeister series, providing
an important basis for common practices of protein crystallization and preservation of enzymes activities (Hofmeister 1888; Collins & Washabaugh, 1985; Cacace et al., 1997). A molecular model of water structures at interfaces has been used to interpret the molecular mechanism of the effects of the Hofmeister series (Collins & Washabaugh, 1985). Water molecules appear to be both the cement that fills crevices between protein building elements such as helices and sheets, and the lubricant that allows motion of these building elements. The broader role of water in stabilizing protein structure is still a subject of controversy (Das et al., 1989; Berndt et al., 1993; Matthews, 1996; Buckle et al., 1996; Takano et al., 1997).

Protein (un)folding

The early events in protein folding are fast processes. A recent study has suggested that the initial collapse to a compact structure can happen within microsecond time scale (Hagen et al., 1996). During this fast process the water molecules on the surface of proteins have to be excluded in order to allow formation of the core of the protein. There have been speculations of the role of water molecules in protein unfolding and folding. For example it has been proposed that in "molten globule" states, or "compact denatured" states, water molecules penetrate more readily into the core of proteins than native structures (Ptitsyn, 1992). Some evidence such as proton exchange rates in "molten globule" structure somehow support this idea (Chyan et al., 1993). It has also been proposed that molten globule states may be intermediate states in the folding process. Statistical analysis of the location of water molecules in crystal structures revealed that the N and C terminus of helices are often found to be highly hydrated (Baker & Hubbard, 1984; Blundell et al., 1983; Sundaralingam & Sekharudu, 1989; Thanki et al., 1991). The insertion of water molecules in the termini of helices are proposed to be an intermediate step in the unfolding and folding of α helices (Sundaralingam & Sekharudu, 1989). Water seems to be a crucial player in the unfolding process. Detailed knowledge of water-protein interactions will be beneficial for protein engineering in order to modify the folding process and to prevent unfolding of proteins.
Water and proton exchange

Proteins and nucleic acids contain many hydrogens in polar groups that are in continual exchange with hydrogens of the solvent. It has long been accepted that protein hydrogen exchange depends on some aspects of structural mobility (see review by Englander & Kallenbach, 1984). Hydrogen isotope exchange has long been recognized and used as a powerful method to characterize structural and conformational dynamics of proteins in folded states as well as during folding (Wagner et al., 1984; Roder et al., 1986; Radford et al., 1992).

As mechanisms of proton exchange in proteins, local structural unfolding models, or solvent penetration models have been proposed. It is apparent that the solvent molecules play a central role to cause proton exchange in proteins. The detailed interaction between water and protein will shed light on the mechanism of hydrogen exchange such as relevance of residence times of hydration water molecules to the hydrogen exchange rates.

Protein functions

Experimental observations indicate that hydration of protein is indispensable for enzyme activities. X-ray crystallography often reveals bound water molecules in the active sites of enzymes. The importance of such water molecules in catalytic reaction is well recognized (for example, Warshel et al., 1989). Water molecules have been found to be involved in intermolecular interactions such as, protein-protein, ligand-protein, and DNA-protein complexes (Janin & Chothia, 1990; Harrison & Aggarwal, 1990). Water molecules also appear to be an important element for molecular recognition (Janin & Chothia, 1990; Billeter et al., 1996).

Location of water molecules in proteins

The positions of water molecules are mostly determined or identified by x-ray crystallography (Saengar, 1987; Jeffery & Saengar, 1991; Baker, 1995). Some water molecules are also observed at the same position by NMR spectroscopy as found in x-ray crystallography (see review, Gerothanasssis, 1994). Water molecules are often found in the core of protein as integral parts of protein structures, which are referred to “interior” water molecules. In addition, water molecules are also found on
the surface of proteins. Statistical analysis of the locations of water molecules in crystal structures reveals several patterns. The preference of water molecules to oxygen atoms rather than nitrogen atoms has been noted (Baker, 1980; Blake et al., 1983; James & Sielecki 1983; Baker & Hubbard 1984). A predominance of interactions with main chain groups rather than side chains is also found (Thanki et al., 1988; Baker, 1995). Statistical analysis also shows correlations between hydration sites identified by crystallography and the geometry of proteins (Kuhn et al., 1992). Several patterns of hydration which are associated with secondary structures have also been reported (see review, Baker, 1995). It is difficult to address the generality of these patterns of hydration water molecules in single crystals and their relevance to protein hydration in aqueous solution because of their inconsistency with results from NMR. For example the distribution of sites showing NOE cross peaks to water in BPTI does not always correlate well with the location of water molecules found in crystal structures (Otting et al., 1991a).

Crystallographic and NMR Detection of Hydration Water

There are many fundamental processes and phenomena in which water seems to play a crucial role. In order to understand such processes and phenomena involving the water-protein interactions, a number of methods have been used for the characterization of hydration of proteins such as infrared spectroscopy, Raman spectroscopy, dielectric spectroscopy, NMR spectroscopy, X-ray and neutron scattering, differential scanning calorimetry, and so on (see reviews by Rupley & Carei, 1991; Gregory, 1995). Recent developments of various techniques have improved the characterization of properties of water. However, X-ray and neutron diffraction methods and NMR spectroscopy are still the only methods which can identify the location of water molecules at atomic resolution in proteins.

The crystallographic method

The crystallographic method is the most powerful method to determine the protein structures. There have been more than five thousand protein structures determined by x-ray crystallography (Protein Data Bank, Bernstein et al., 1977). The number of structures determined by x-ray diffraction is rapidly growing. Direct interactions between proteins and water molecules in the interior and at the surface
of proteins are vividly manifested by the crystallography although only the positions of the oxygen atoms from water molecules are observed (Savage & Wlodawer, 1986; Saenger, 1987; Baker, 1995). X-ray crystallography observes the atomic and molecular structure as a three dimensional map of the distribution of electrons. Hence there are several difficult aspects for the identification of water molecules.

(1) Model bias

It is generally difficult to locate reliably solvent molecules in the density map because solvent molecules at the surface often have low electron densities (Savage & Wlodawer, 1986; Baker, 1995). Therefore, solvent molecules are not included in early stages of analysis, or when the resolution is limited. In addition when inaccurate or incomplete experimental phases are substituted or augmented by models, model bias will make it more difficult to interpret low density maps (Burling et al., 1995). Although X-ray crystallography is a powerful method to analyze the hydration pattern on the surface, the determination of water structure around biomolecules is still a difficult task and can be biased easily during model building.

(2) Crystal contacts

Diffraction methods absolutely require a crystal for a high resolution structure. Proteins in crystals have significant contacts with neighboring molecules. For example in human lysozyme crystals with 37% solvent content 38% of the surface is involved in crystal packing. Whereas turkey egg white lysozyme crystals with 51% solvent content have 13% of the surface covered by crystal contacts (Baker et al., 1983). Tighter crystal packing generally leads to better ordered crystals and the possibility of higher-resolution x-ray diffraction data. This allows better identification of water molecules. In fact crystals in which many ordered water molecules are observed often have low solvent content. For example the crystals of 2-Zn insulin crystals (Baker et al., 1988), γB-crystalline (Kumaraswamy et al., 1996), and crambin (Teeter, 1993) have 30%, 36%, and 32% solvent content respectively. This suggests that for the identification of water molecules tighter packing is preferable because it results in higher resolution data but this also engenders that a larger percentage of the surface is involved in crystal packing. Thus it is impossible to characterize the
entire surface hydration shell of a protein by crystallography.

(3) Lack of dynamics

X-ray diffraction data results from time and spatial average over a large number of molecules in the crystal lattice and therefore provides an averaged view of solvation and flexibility. Two important factors of the quality of the solvent molecules are their occupancies and B factors. The occupancy refers to the fraction of time that a particular site is occupied in the crystal. The B factor, or temperature factor, in practice cover both thermal vibration and positional disorders in the crystal structures. These data might provide some idea about dynamics of solvent molecules. But it is quite difficult to derive the reliable information of dynamics from crystal structures. In addition crystal contacts may reduce the mobility of water molecules. Thus, it is difficult to answer the relevance of the observation of water molecules in crystal to hydration water in aqueous solution. The most frequently used approach is the statistical analysis of the positions of solvent molecules in crystals for the characterization of hydration (Thanki et al., 1988, 1991; Kuhn et al., 1992).

Neutron Scattering

In x-ray diffraction the scattering power of an atom is proportional to its number of electrons. Therefore usually the protons are not visible. In contrast some isotopes such as H and D can easily be distinguished in neutron density maps so that neutron scattering experiments can provide more reliable, precise and unambiguous localizations of H atoms in crystal structures. Neutron diffraction is often used for characterization of hydration water and verification of X-ray diffraction data (Savege & Wlodawer, 1986).

NMR spectroscopy

NMR can characterize water molecules in solution without artifacts from crystal contacts. NMR spectroscopy does not require ordering of molecules as is required in crystallographic methods. This makes a clear contrast with diffraction methods and is of advantage for the characterization of hydration around flexible side chains. There have been many attempts to characterize the hydration shell by NMR spec-
NMR spectroscopy. Two major features of NMR spectroscopy have been used for the characterization of hydration molecules. One is the relaxation time of water molecules using \(^1\)H, \(^2\)H, and \(^17\)O nuclei (Jacobson et al., 1954; Koenig & Schillinger, 1969; Akasaka, 1981; Bryant, 1996). The other is the detection of NOEs for identification of water (Pitner, et al., 1974; Otting & Wüthrich, 1989; Otting et al., 1991a,b; Gerothanassis, 1994).

Nuclear Relaxation

Relaxation of water molecules has long been used for characterization of water molecules by analyzing line shapes and measuring longitudinal relaxation rates (Jacobson et al., 1954; Koenig & Schillinger 1969; Akasaka, 1981; Bryant, 1996). The frequency dependence of the longitudinal relaxation rate, the nuclear magnetic relaxation dispersion (NMRD), contains information about water-protein interactions and dynamics (Koenig & Schillinger 1969; Denisov & Halle, 1996; Bryant, 1996). The relaxation measurements cannot provide both the position and the dynamics of individual water molecules. The disadvantage of relaxation approach is lack of the information about the location of water molecules as compared with detection of NOEs.

Nuclear Overhauser Effect

Nuclear Overhauser effect is not only essential for the determination of three dimensional structures of proteins but also used for the identification of the location of water molecules in aqueous solution (Wüthrich et al., 1996). Individual water molecules are identified via dipolar cross-relaxation between the protein protons and water protons. Detection of NOEs by using multidimensional NMR spectroscopy has identified a handful of “long-lived” water molecules in proteins and nucleic acids (see review by Kubinac & Wemmer, 1992; Gerothanassis, 1994). In addition the sign and ratio of the cross relaxation rates of \(\sigma^{\text{NOE}}\) and \(\sigma^{\text{ROE}}\) have been used for the characterization of the dynamics of water molecules at the individual sites (Otting et al., 1991a).
The limitation of NMR methods

NMRD can provide information on some dynamical features of water but lacks the information of the location and its atomic resolution. On the other hand detection of NOEs can provide both the location and dynamics of water molecules because NOE cross peaks between water and the protein tell proximity to the hydration site and its dynamics although it can not determine the precise positions of water molecules as determined by crystallography. Identification of water molecules detecting NOEs, however, is an attractive method to characterize the location and dynamics of the first hydration shell of a protein in aqueous solution. NOE cross peaks at the water resonance in NOESY spectra can be categorized into one of three groups. i.e. (1) direct NOE with water molecules (red and blue arrows in Figure 2-1). (2) NOE via rapidly exchanging protein protons such as hydroxyl protons and amino protons (an arrow in magenta in Figure 2-1). (3) intramolecular NOEs with protons of the protein which have chemical shifts at or close to the water resonance. The third group can be easily separated by using several NMR techniques such as isotope fil-
tering, diffusion filtering, and relaxation filtering (Grzesiek & Bax, 1993a, 1993b; Wider et al., 1996; Mori et al., 1994). On the other hand NOEs originating from rapidly exchanging labile protons in proteins cannot be distinguished experimentally from NOEs from long-lived water molecules because they produce NOEs of the same sign as NOEs form long-lived water molecules at the water resonance due to their rapid exchanges with water. The NOEs with water molecules can also be categorized into two groups, (1) NOEs with long-lived water molecules which show negative cross relaxation rates σ^{NOE} (conventionally positive cross peaks in NOESY spectra), illustrated as a red arrow in Figure 2-1, and (2) NOEs with short-lived water molecules illustrated as a blue arrow in Figure 2-1, which show positive cross-relaxation rates σ^{NOE} (negative peaks in NOESY spectra) (Otting et al., 1991a). There have been few reports on short-lived water molecules (Otting et al., 1991a; Otting et al., 1992; Brüschweiler et al., 1995). This is presumably because weak peaks from short-lived water molecules can be covered by strong cross peaks of negative NOEs originating from long-lived water molecules and the rapidly exchanging labile protons of proteins. Thus, long-lived water molecules and rapidly exchanging labile protons are main obstacles to study the surface hydration of proteins. Therefore there has so far been no report on the complete hydration shell of a protein by NMR spectroscopy.

For the better understanding of various biologically relevant phenomena, we would like to understand the protein hydration. What do we have to know about water for the better understanding of the protein hydration? First the location of water molecules, the structure of the hydration shell, the difference of water structure around non-polar and polar groups, and the detailed hydration geometry at the interface. Second, the movement of water molecules i.e. dynamics of water molecules at the surface of proteins, and the time scale of the dynamics of water molecules. The relevant time scale for understanding a particular process, or biological function. Coupling of the water dynamics and dynamics of the macromolecules. Third, by characterizing the aforementioned features, to explain the behavior of a particular system, not only at the molecular level such as protein-substrate binding, protein folding, but also on the increasingly important mesoscopic scale such as protein aggregation, and fibrious formation.
This dissertation describes the characterization of the hydration shell of a protein by the combination of protein engineering and high field NMR spectroscopy to gain new insights for understanding protein hydration.
3. Hydration study of dh434(0–63) by NMR spectroscopy

3.1. Introduction

Despite enormous interests on protein hydration there has been no study on the complete hydration shell of a protein in aqueous solution at atomic resolution. This chapter presents the main part of the thesis and describes for the first time the complete hydration of a protein by NMR spectroscopy with a model protein, des-hydroxy 434(0–63). The details of the preparation, characterization, structure determination of this protein, and NMR techniques are described in the following chapters 4 to 7.

3.2. Detection of surface hydration water by NMR spectroscopy

Detection of nuclear Overhauser effect (NOE) between proteins and water molecules is the only method to determine the hydration sites in proteins at atomic resolution by NMR spectroscopy, which has been extensively used for the identification of hydration water molecules in proteins (Pitner et al., 1974; Otting & Wüthrich, 1989; Clore et al., 1990; Forman-Kay et al., 1991 Otting et al., 1991a,b; Clore et al., 1992; Otting et al., 1992; Grzesiek & Bax 1993a,1993b; Kriwacki et al., 1993; Xu et al., 1993; Clore et al., 1994; Gerothanasssis, 1994; Grzesiek et al., 1994; Qi et al., 1994; Qin et al., 1994; Brüschweiler et al., 1995; Ernst et al., 1995a; Wang et al., 1996).

In this study we have also used the detection of NOEs with water molecules for the characterization of the surface hydration of a protein, which can provide the location and dynamics of water molecules on the surface.

However, such NOEs can be originating from three different origins as discussed in Chapter 2. First is NOEs originating from long-lived water molecules with residence time of longer than 0.5 nsec such as interior water molecules illustrated by a red arrow in Figure 2-1 (Otting et al., 1991a). Second is NOEs originating from short-lived water molecules with residence time of shorter than 0.5 nsec shown by
blue arrows in Figure 2-1 (Otting et al., 1991a). In principle these two contributions come from the same origin, i.e. water molecules, but because of their time scale of the dynamics, can be differentiated by the difference in their sign of the cross relaxation rate γ^{NOE} (Otting et al., 1991a). Third is NOEs mediated via fast exchanging labile protons in proteins, in particular, such as hydroxyl groups which produce strong NOE cross peaks in the spectra (an arrow in magenta shown in Figure 2-1). Since positive NOEs were observed for side chains of lysine and arginines in the previous reports, the most problematic amino acid types seem to be amino acids containing hydroxyl groups (Otting et al., 1991a; Liepinsh et al., 1992; Brüschweiler et al., 1995). Usually NOEs originating from long-lived water molecules and via rapidly exchanging labile protons produce strong cross peaks of negative NOEs, which cover weak peaks of the opposite sign originating from short-lived water molecules and cannot be experimentally distinguished each other, which would complicate the NMR data analysis. Thus, for the observation of the complete hydration shell of a protein in aqueous solution by NMR spectroscopy the protein of no interior water molecules and no hydroxyl groups would be desirable.

3.3. Protein design for the hydration study

As a model protein, the DNA binding domain of 434 repressor was chosen for this surface hydration study by NMR spectroscopy. The DNA binding domain of 434 repressor is well-characterized both by X-ray crystallography at high resolution and by NMR spectroscopy (Mondragon et al., 1989; Neri et al., 1992a; Pervushin et al., 1996). It is found that the crystal structure of 434(1–69) (Figure 3-11) contains no interior water molecules as found in BPTI of which interior water molecules were studied in great details and disturbs the observation of the complete surface hydration (Otting et al., 1991a; Dötsch et al., 1995; Denisov et al., 1995a, 1996). Moreover, the DNA binding domain of 434 repressor, is highly soluble up to 20 mM in aqueous solution making it possible to gain sensitivity with highly concentrated samples. It can be also expressed and purified from E.coli expression system which makes it easy to design a new suitable variant for the characterization of the hydration by NMR spectroscopy. A protein, des-hydroxyl 434(0–63), in short notation, dh434(0–63), was designed which has no hydroxyl groups and is expected to have no interior
water molecule for the clear observation of the hydration shell. The details of the construction and preparation of this dh434(0–63) is described in Chapter 4 (see Appendix H). The high resolution solution structure of dh434(0–63) was determined by NMR spectroscopy and found to have a very similar backbone conformation to that of the original 434(1–63) (Chapter 6). There is no conceivable difference in the backbone conformation observed between dh434(0–63) and 434(1–63). This dh434(0–63) was used as a model protein for the characterization of the complete hydration by NMR spectroscopy. Since there is no hydroxyl groups in the protein, water-protein NOEs can be more clearly analyzed than any other proteins. This system will be the best system for the hydration study by NMR spectroscopy.

Sample preparation & NMR spectroscopy

The newly designed protein, dh434(1–63) was cloned in E. coli, and the uniformly 13C/15N-labelled dh434(0–63) was expressed and purified as described in Chapter 4. The NMR samples contain 3 mM protein in 20 mM potassium phosphate buffer, or 7 mM protein without buffer pH 4.8, in a mixed solvent of 90% H$_2$O/10% D$_2$O. All the final NMR experiments for the hydration studies was carried out with a 7 mM uniformly 13C/15N labelled (> 98%) dh434(0–63) without any buffer. The pH was adjusted to pH 4.8 by addition of minute HCl and NaOH. The concentration of the sample was determined by the optical density at 280 nm. All the NMR experiments for the identification of water molecules were performed using Varian Unity-plus operating at 1H frequencies of 750 MHz with a triple resonance probe head equipped Z-gradient coil.

For the detection of NOEs between water and the protein protons, two-dimensional [15N,1H]-HSQC relayed and [13C,1H]-HSQC relayed NOE/ROE difference experiments. Special care was taken to suppress artifacts originating from the strong solvent magnetization at high magnetic field (Sobol et al., 1998; see Chapter 7). To minimize the effect of radiation damping and demagnetizing field effect the water magnetization was carefully monitored during the whole experiment to produce artifact-free water-protein NOE/ROE spectra. In addition prior to the mixing period the proton magnetization attached to 13C/15N was destroyed by using a double filter unit to minimize the excitation due to radiation damping (Sobol et al., 1998; Chapter
Table 3-1: Summary of the two-dimensional difference experiments described in Chapter 7 for the observation of hydration water molecules with 7 mM dh434(0–63) at pH 4.8 and 13°C measured at a 1H frequency of 750 MHz.

<table>
<thead>
<tr>
<th>Type</th>
<th>ω_1</th>
<th>region</th>
<th>mixing (msec)</th>
<th>total measurement time (hours)</th>
<th>$t_{1\text{max}}$ (msec)</th>
<th>$t_{2\text{max}}$ (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOE</td>
<td>13C</td>
<td>aliphatic</td>
<td>60</td>
<td>61</td>
<td>12.8</td>
<td>66.7</td>
</tr>
<tr>
<td>ROE</td>
<td>13C</td>
<td>aliphatic</td>
<td>30</td>
<td>52</td>
<td>12.8</td>
<td>66.7</td>
</tr>
<tr>
<td>NOE</td>
<td>13C</td>
<td>aromatic</td>
<td>60</td>
<td>35</td>
<td>7.4</td>
<td>66.7</td>
</tr>
<tr>
<td>ROE</td>
<td>13C</td>
<td>aromatic</td>
<td>30</td>
<td>28</td>
<td>7.4</td>
<td>66.7</td>
</tr>
<tr>
<td>NOE</td>
<td>15N</td>
<td>-</td>
<td>60</td>
<td>37</td>
<td>32</td>
<td>66.7</td>
</tr>
<tr>
<td>ROE</td>
<td>15N</td>
<td>-</td>
<td>30</td>
<td>40</td>
<td>33.3</td>
<td>66.7</td>
</tr>
</tbody>
</table>

The detail of the experiments were described in Chapter 7. Table 3-1 summarizes all the NMR experiments for the detection of hydration water molecules in dh434(0–63). For the controls, all the measurements were performed with the same setups but with weak pre-saturation during relaxation periods with 30~100% of the total measurement times. The control spectra contained no peaks except for a narrow region near the water resonance (see Chapter 7 for the details).

Estimation of the residence times based on the diffusion model

Otting et al. proposed the estimation of the residence times of the hydration water molecules based on the diffusion model (Otting et al., 1991a; Ayant et al., 1977). The estimation of the residence times depends on the rotational correlation time and the size of the spheres in the model (Figure 3-1A). The cross relaxation rates were calculated from the experimental data. The rotational correlation time of dh434(0–63) at 13°C was experimentally obtained as described in Chapter 6. The radius of gyration of dh434(0–63) was calculated from the 20 NMR conformers of dh434(0–63) for the three axis, $10.92 \pm 0.06 \text{\AA}$, $10.64 \pm 0.05 \text{\AA}$, $9.82 \pm 0.08 \text{\AA}$ respectively using program MOLMOL (Koradi et al., 1995). The radius of the protein $r_p=11 \text{\AA}$, the rotational correlation time of the protein, $\tau_R^p=6 \text{nsec}$, the radius of a water molecule, $r_w=2.0 \text{\AA}$, and the rotational correlation time, $\tau_R^w=3.5 \text{psec}$ were used for this cal-
The cross relaxation rates in the laboratory frame \(\sigma^{\text{NOE}} = 6J(2\omega) - J(0) \), in the rotating frame \(\sigma^{\text{ROE}} = 3J(\omega) + 2J(0) \), and their ratio \(\sigma^{\text{NOE}}/\sigma^{\text{ROE}} \) were calculated by the following equations for the spectral density function \(J(\omega) \) (Ayant et al., 1977).

\[
J_2(\omega) = \frac{N_S}{24\pi Db} \sum_{l=0}^{\infty} (2l+1)! \sum_{\lambda=0}^{l} \frac{1}{(2\lambda+1)!(2(l-\lambda)+1)!} \left(\frac{\rho_l}{b} \right)^{2\lambda} \left(\frac{\rho_0}{b} \right)^{2(l-\lambda)} A_{l,\lambda}(\omega)
\]

Where \(A_{l,\lambda}(\omega) \) and \(u_{l,\lambda}(\omega) \) are defined as follows.

\[
A_{l,\lambda}(\omega) = \text{Re}\left\{ \frac{1}{u_{l,\lambda}} \left[\frac{1}{2l+3} - \frac{l+3}{u_{l,\lambda}} \left(1 + \frac{(l+3)K_{l+5/2}(u_{l,\lambda})}{u_{l,\lambda} K_{l+3/2}(u_{l,\lambda})} \right)^{-1} \right] \right\}
\]

\[
u_{l,\lambda}(\omega) = \{ i\omega \tau + \tau[\lambda(\lambda + 1)D_S^f + (l - \lambda)(l - \lambda + 1)D_I^f] \}
\]

in which \(b = r_P + r_W \) (the distance from the center of the protein), \(\rho = \rho_P \) (the distance from the water), \(\tau = b^2/D \), \(D_S^f \) and \(D_I^f \) are the rotational diffusion coefficients \((D_S^f = 1/6\tau_w \) and \(D_I^f = 1/6\tau_p \)) (see the figure captions in Figure 3-1).

The average residence times are derived from \(\tau_{\text{res}} = x^2/(6D) \), where \(x = 4\AA \) was used as a criterion for the observation of NOEs (Otting et al., 1991a). Figure 3-1 presents the numerical calculation from these equations with the experimental data of dh434(0–63). This model predicts that the sign change in NOE may be expected to occur for residence time around ~300 psec (Figure 3-1C). This residence times estimated from the cross relaxation rates based the diffusion model appears to depend on the shape of the molecules and the geometry of the molecules (Brüshweiler et al., 1994). However, the observation of positive NOEs can be still unambiguously attributed to the short-lived water molecules (Brüshweiler et al., 1994; Otting & Liepinsish, 1995).

Beside of the validity of the model for the estimation of the residence times, it is worth noting that the estimated residence times derived from the experimental data have already a tendency to be longer due to the cancellation of positive NOEs by negative NOEs from neighboring protons reducing the ratio of \(\sigma^{\text{NOE}}/\sigma^{\text{ROE}} \). In other words, the estimation of the residence times strongly depends on their neighboring...
protons in particular labile protons in the three-dimensional structure of dh434(0–63). It is quite difficult to assess all the contribution from the neighboring protons. Thus, only the statistical analysis could be meaningful for the estimation of the residence times.

Hydration of dh434(0-63) by NMR spectroscopy

Figure 3-2 presents the aliphatic region of the 13C, 1H]-HSQC relayed NOE/ROE difference spectra providing an impression of the quality of the spectra. Convention-
ally a positive NOE (positive σ^{NOE}) gives rise to a negative cross peak and vice versa. In all the spectra presented here negative NOEs and positive NOEs are drawn by solid lines and dotted lines, respectively. It can be readily recognized that there are a few very strong cross peaks showing negative NOEs in Figure 3-2A. Those cross peaks are assumed to be originating from α-NH$_3$ group at the N-terminus of dh434(0–63) which is chemically exchanging with water molecules as rapidly as hydroxyl groups (Wüthrich, 1986).

In the aliphatic region of the spectra in Figure 3-2, 123 peaks was possible to be identified, which can be used for the analysis of the hydration pattern of dh434(0–63). The identified hydration sites are mapped into a CPK-model of dh434(0–63) in Figure 3-3. The hydrogen atoms showing both positive NOEs and ROEs are colored in green. The hydrogen atoms showing positive ROEs but no NOEs are colored in light green. These hydrogen atoms are clear indications of short-lived water molecules in its proximity. The chemically exchanging groups are indicated in magenta. The hydrogen atoms in white are the hydrogen atoms which have the average solvent accessible surface of more than 5Å2 in the 20 NMR conformers of dh434(0–63) but for which no unambiguous evidence for the hydration could be identified mainly because of the signal overlaps. The hydrogen atoms in yellow is the hydrogen atoms showing negative NOEs, which could be originating from the long-lived water molecules, or, via rapidly exchanging labile protons.

Based on the obtained spectra, the individual hydration sites can be inspected in more details in the following. In particular, the difference between polar and non-polar hydrations, the geometry of the hydration sites are of special interest.
Figure 3-2: Two-dimensional $[^{13}\text{C},^{1}\text{H}]$-HSQC-relayed NOE/ROE difference spectra for detection of water-protein interactions with a 7 mM sample of dh434(0–63) at 13 °C and pH 4.8 measured at a ^{1}H frequency of 750MHz. (A) NOE spectrum with a mixing time of 60 msec. The positive peaks of Met0 are indicated. Positive and negative NOE peaks are indicated by broken and solid lines, respectively. (B) ROE spectrum with a mixing time of 30 msec.
3. Hydration study of dh434(0–63) by NMR spectroscopy

3.3 Hydration of methyl groups

In the two-dimensional [\(^{13}\text{C}, \, ^{1}\text{H}\)]-HSQC relayed NOE difference spectra 28 methyl groups out of a total 45 methyl groups in the protein are observed (Figure 3-4). 4 methyl groups, L6δ\(^1\), L6γ\(^2\), L34δ\(^2\), and L48δ\(^2\), showing negative NOEs are not located on the surface of the protein, which will be discussed below in more detail. Rapidly exchanging labile protons such as, \(\alpha\)-NH\(_3\) of the N-terminus, \(\zeta\)NH\(_3\) of Lys23 can be found with 5Å from the 3 methyl groups, M0ε, L15δ\(^2\), and L15δ\(^1\) that show negative NOEs. Since \(\zeta\)NH\(_3\) of Lys23 is in the proximity of Leu15 and shows rela-

Figure 3-3: Space-filling CPK model of one of the 20 NMR structures of dh434(0–63) presenting the surface hydration. The hydration sites are indicated with the following colour coding for the hydrogen atoms: green for hydrogens showing positive NOEs and positive ROEs with the water, light green for hydrogen atoms showing no NOEs and positive ROEs with the water, orange for hydrogen atoms showing negative NOEs and positive ROEs with the water, magenta for protons showing chemical exchange with the water, and white for hydrogen atoms that have an average solvent accessible surface of more than 5 Å\(^2\) in the 20 NMR conformers but for which no unambiguous evidence for hydration was obtained. (A) Same orientation as Figure 6-5A. (B) The molecule was rotated about a vertical axis by 180°.
tively strong negative NOEs with its εCH$_2$ group, this labile protons are assumed to contribute to the negative NOEs of methyl groups of Leu15. The other 21 methyl groups show positive NOEs, which is a strong indication for a short residence time of less than \sim300 ps for the hydration water molecules based on the diffusion model (Figure 3-1). For the 20 positive NOEs with good signal to noise the average ratio of $\sigma^{\text{NOE}}/\sigma^{\text{ROE}}$ is 0.5 ± 0.3. This might be translated into a range of estimated residence times of 10–160 ps based on the diffusion model (Ayant et al., 1977; Otting et al., 1991a; Figure 3-1). Some earlier NMR studies indicated mainly long-lived water molecules around methyl groups on the surface and only very few "short-lived" water molecules were found (Clore et al., 1994; Qin et al., 1994; Karplus & Faerman, 1994; Ernst et al., 1995a; Ernst et al., 1995b; Matthews et al., 1995). This situation could not be supported using this optimized NMR experiments and the protein dh434(0–63) without hydroxyl groups which greatly clarifies the ambiguities in the origin of water-protein NOEs. The observation of positive NOEs indicates that the hydration water molecules around methyl groups on the surface of a protein are highly mobile which is in line with studies on small peptides that indicate “short-lived” water molecules surrounding the entire peptides (Otting et al., 1991a; Otting et al., 1992; Brüschweiler et al., 1995).
Hydration of polar side chains

Polar side chains are prime candidates to form hydrogen bonds with water molecules. Hence water molecules around polar side chains might have longer residence times than around non-polar side chains. In crystal structures statistically more water molecules are found near polar residues than non-polar groups (Thanki et al., 1988; Thanki et al., 1991). The NMR data on dh434(0–63) reveals that the side chains of all polar amino acids class have some positive NOEs with water molecules except for the Lys residues. In the case of Lys residues, the rapidly exchanging protons in \(\zeta \text{NH}_3 \) groups transfer negative NOEs to the water molecules due to the fast chemical exchange covering positive NOEs (Qian et al., 1993). Unambiguous posi-
ative NOEs could be assigned to the following protons: the γ protons of Glu4, Glu32, Glu47, the β protons of Asp27 and Asp57, the δ protons of Arg7, Arg43 and Arg50, the γ protons of Arg7, Arg43, and Arg50, the β protons of Arg7, Arg41, Arg43 and Arg50. The average ratio of $\sigma_{NOE}/\sigma_{ROE}$ for the methylene groups of the polar residues with positive NOE peaks is 0.4 ± 0.3 for 31 peaks. This results in the estimated residence times in the range from 20 to 230 psec (Figure 3-1C). NOEs with water molecules are observed for all the NH$_2$ groups of Gln and Asn except for that of the buried residue of Gln17. The NOEs of these NH$_2$ groups show all positive NOEs with exception of Asn36 which has negative NOEs. Those observed positive NOEs are indicative of short-lived water molecules around side chain amide groups.

![Figure 3-5: Expansion of the water-NOE spectrum (Figure 3-2A) Positive and negative NOEs are indicated by broken and solid lines, respectively.](image-url)
Hydration of aromatic rings

The protein, dh434(0–63) contains only one Trp and one Phe which makes difficult to draw a general picture of hydration of aromatic rings. Positive NOEs were observed for the protons exposed on the surface, i.e. the He¹, Hδ¹, and Hζ² protons of Trp58 (Figure 3-6). There have been no detectable NOE or ROE with water for one He of Phe44 although it is exposed on the surface (Figure 3-6). Judging from the peak intensity in a [¹³C, ¹H]-HSQC reference spectrum, it is unlikely that the signal intensity has been dramatically reduced by the relaxation of the attached ¹³C atoms. However, the other He proton of Phe44, which is not exposed on the surface, is located near the Leu48, which shows negative NOEs. This observation might suggest that the expected positive NOEs for the He protons of Phe44 could be cancelled with negative NOEs due to ring flipping of Phe rather than the absence of hydration water molecules around aromatic rings. Thus our observation suggests that the exposed aromatic rings are equally hydrated with short-lived water molecules.
Polypeptide backbone hydration

A consistent statistical preference of hydration to the backbone atoms is found in crystal structures (Thanki et al., 1988; Thanki et al., 1991). Are the backbone atoms more hydrated than side chains atoms in aqueous solution? 13 α protons showing NOEs with water molecules could be identified unambiguously including all Gly, Leu13, Glu19, Val24, Gln28, Lys41, Arg50, and Ala63. The α protons showing negative NOEs are always located next to the chemically exchanging amide protons (Figure 3-12). Otherwise α protons show positive NOEs indicating of short-lived water molecules close to the backbone segments. Amide protons of proteins are in continuous chemical exchanges with water molecules which usually produce exchange peaks in both NOE and ROE spectra for fast exchanging amide groups (Wüthrich, 1986). The NOEs for the amide protons in dh434(0–63) can be divided into the three
classes. The first class in protons showing negative NOEs and ROEs, which are due to the predominant chemical exchange contribution. The second class has both positive NOEs and ROEs, which is a clear indication of interactions with short-lived water molecules. The third class contains protons showing negative NOEs and positive ROEs, which is indicative of long-lived water molecules or NOEs via chemical exchange. In spite of the chemical exchange contribution, we could identify 17 amide protons of positive NOEs for slowly exchanging amide protons (Figure 3-7; Figure 3-8). The rapidly exchanging protons of the backbone amide groups are only observed in the loop, the turns, and terminal sites of the helices in dh434(0–63). These observation suggest that there is no clear consistent difference for preferential binding of water molecules between to the backbone atoms and the side chains.
3.4. Discussion

Evaluation of completeness of observations on hydration

The NMR hydration measurements with dh434(0–63) allowed an almost complete characterization of the hydration shell with only a very small area for which no direct interaction with water molecules could be established (Figure 3-3). This is the first protein of which hydration has been analyzed to this extent. Figure 3-9 exhibits the extent of the observable surface hydration in detail. The protons which are on the surface but no information could be obtained unambiguously are colored in white in Figure 3-3. These sites are mainly due to overlapping of peaks. In addition some of them could not be observed presumably due to the signal attenuation by relaxation of attached 13C nuclei because these peaks are observed weakly in a

![Figure 3-8: Amide region of the two-dimensional $^{[15N,1H]}$-HSQC-relayed ROE difference spectra for detection of water-protein ROE with a 7 mM sample of dh434(0–63) at 13 °C and pH 4.8 measured at 1H frequency of 750 MHz with a mixing time of 30 msec. The positive and negative peaks are indicated by solid and dotted lines, respectively. The labels indicate the identified backbone amide groups.](image-url)
3. Hydration study of dh434(0–63) by NMR spectroscopy

3.4

standard HSQC spectra. The surface of dh434(0–63) colored in green in the Figure 3-9 is the surface of the atoms within a distance of 4Å from the protons colored in green and light green in Figure 3-3. These atoms cover on average 88% of solvent accessible surface of the protein. Additionally the surface colored in yellow are the sites where hydration water molecules could be located although these sites are ambiguous due to its negative NOEs. Despite the sites where no information on hydration is available, total of the 98% of solvent accessible surface of a protein could be characterized by using NMR spectroscopy in this study. This is the first case in which such large area of the surface hydration has been analyzed by any kind of methods at atomic resolution in aqueous solution.

Comparison with hydration in single crystal

The first individual hydration sites were observed in single crystals by x-ray crystallography. However, the proteins in crystals have usually contacts with neighboring molecules which could prevent the observation of the complete surface hydration shell and reduce the dynamics of water molecules on the surface. Figure 3-11 presents the crystal structure of 434 repressor, 434(1–69) solved at 1.9 Å resolution with the oxygens of the identified hydration water molecules indicated by red
spheres (Mondragon et al., 1989). The modeled hydrogen atoms within a distance of 5Å from the oxygen atoms from the water molecules in the crystal structure are colored in green. These hydration sites can not cover the complete surface of the protein because of the inherent features of the diffraction methods such as crystal contacts as discussed in Chapter 2. It is found that the water molecules have more contacts with neighboring molecules in the crystal lattice of 434(1–69) (Figure 3-10). The large white area in Figure 3-11B does not have any contacts with the neighboring molecules. This observation indicates that the observed water molecules in the crystal structure are due to the geometrical restrictions in the crystal. Therefore the observation of the surface water molecules by crystallography could be artifacts from crystallographic methods rather than the actual hydration picture on the surface. In contrast NMR does not suffer from crystal contacts and does not require ordering of water molecules to be detected but can deal with a highly dynamical system.

Hence characterization by NMR spectroscopy could cover nearly the entire surface of a protein. In this study the intuitive picture of the surface of a protein in aqueous solution surrounded with water molecules and that most water molecules close to polar groups as well as non-polar groups having short residence time of less than approximately 300 psec are revealed, which is a different view of the hydration provided by crystallography.

Figure 3-10: X-ray structure of 434(1–69) with neighboring molecules in the crystal lattice indicating the crystal contacts. Water molecules are shown by red spheres. A CPK space-filling model of one of molecules and the backbone atoms of the other molecules are displayed. The hydrogen atoms within a distance of 5 Å from the oxygen atoms of the hydration water molecules identified by x-ray crystallography are coloured in green. The red spheres are the oxygen atoms of the hydration water molecules.
Figure 3-11: X-ray structure of dh434(1–69). (A) The thick lines indicate the backbone atoms of dh434(1–69). The thin lines present the heavy atoms of the side chains. C and N denote the C- and N- terminus, respectively. Water molecules are shown by spheres. (B) CPK space-filling model of 434(1–69) illustrating the hydration water molecules by spheres. The hydrogen atoms within a distance of 5 Å from the oxygen atoms of the hydration water molecules identified by x-ray crystallography are coloured in green. The red spheres are the oxygen atoms of the hydration water molecules. (C) Same presentation as (B), with the molecules rotated around a vertical axis by 180°.
Hydration study of dh434(0–63) by NMR spectroscopy

3.4

Hydration of internal cavities?

Negative NOEs observed between water and protein protons are indicative of long-lived water molecules with residence times of longer than ~300 psec (Figure 3-1C). However, such negative NOEs could also be attributed to the remaining fast exchanging labile protons in the protein. It is not possible to separate these two types.
of negative NOEs experimentally. For an unambiguous identification of long-lived water molecules it is necessary to exclude the second possibility by close inspection of the three-dimensional structures. It is usually possible to conclude the presence of long-lived water molecules only if there is no labile proton within a distance of 5Å from such protons of negative NOEs. It appears that fast exchanging labile protons are only the N-terminal α-NH$_3$ groups in dh434(0–63) having a similar intrinsic exchange rate as hydroxyl groups. The N-terminal α-NH$_3$ group produces strong negative NOEs with the α, β and γ protons of Met0 (Figure 3-2A). For all the protons showing negative NOEs there are always some labile protons such as ζNH$_3$ of Lys, the N-terminal α-NH$_3$ group, or exchanging HN group within a distance of 5Å in at least one of the 20 NMR conformers of dh434(0–63). This makes it difficult to identify long-lived water molecules. However, it is worth noting that there are few fast exchanging protons found within a distance of 5.0 Å from Ile6 CH$_3$δ1 and Leu48 CH$_3$δ2, which show weak negative NOEs and are located in the core of the protein. These two sites are on the face of a cavity between the two sub-domains covered with a flexible linker (Figure 3-12). Moreover NH groups of Gly3 and Gly37 have negative NOEs and positive ROEs indicating the possibility of long-lived water molecules in their proximity (Figure 3-7; Figure 3-8). These sites are also located near the entrance of the cavities providing supports for the possibility of long-lived water near these cavities (Figure 3-12). These cavities can be seen in 10 structures out of the 20 NMR conformers of dh434(0–63). The average volume of the cavities found in this 10 NMR structures is about 30 Å3 which could accommodate a water molecule (~35Å3). For long-lived water molecules in the interior of proteins which are integral parts of the structure, strong negative NOEs would be expected, for example as observed in bovine pancreas trypsin inhibitor (BPTI) (Otting & Wüthrich, 1989; Otting et al., 1991a). However, the weak NOEs observed for these sites in dh434(0–63) might indicate low occupancy of the water molecule in the cavities implying that the water molecules could be accidentally trapped by "breathing" of the protein rather than being as an integral part of the structure. Based on these data one might speculate that a first event during unfolding includes the water molecules entering into the core of proteins between the sub-domains through a cavity or channel occasionally produced by a flexible linker. The geometry of the hydration sites appears to be more relevant to the residence time of the water molecules than amino acid types.
Figure 3-13:
Figure 3-13: Presentation of the hydration sites. (A) residues from 0 to 13; (B) residues from 14 to 24; (C) residues from 25 to 36; (D) residues from 37 to 44; (E) residues from 45 to 52; (F) residues from 53 to 63. The protons of negative NOEs are indicated by tetrahedrons. The protons and amide groups of positive NOEs, and chemically exchanging groups are indicated by spheres. The protons exchanging with water are coloured in magenta. The cavities from the 20 NMR structures and the backbone are indicated by cages and thin lines, respectively.
Hydration in helices?

The patterns of the hydration sites in the all segments of dh434(0–63) are presented in Figure 3-13. In the crystal structures more ordered water molecules are found at the termini of helices externally or internally (Thanki et al., 1991). dh434(0–63) contains five helices offering the possibility to investigate the hydration pattern of helices in aqueous solution. Figure 3-13A, B, C, E, F present the hydration of each helices. In helix I and II such N-terminal amide groups, Met2 and Gln17 show the dominant chemical exchange with water molecules in ROE spectra. N-terminal amide groups in helix III and VI tend to indicate positive NOEs, for example, Asp27 and Ala55, but dominant chemical exchanges with water molecules at the C-terminus such as Asn36, Leu61, Gly62 are observed. These amide groups in the C-terminus are involved in hydrogen bonds with the oxygen atoms of the backbones in the three-dimensional structures of dh434(0–63). In helix IV the amide group at Leu45 shows negative NOEs, which is buried in the core of the protein. The analysis of these helices does not provide any consistent view of the hydration of helices unfortunately. However, at the terminal amide groups in the helices tends to show dominantly chemical exchanges with water. This situation is the same for the loop and the turn. Moreover, it is worth to note that such backbone amide groups in the loop and in the turn show exchange peaks in ROE spectra but the none of side chain amide groups shows any exchanging peaks in ROE spectra although the backbone NH groups and side chain NH₂ groups are expected to have similar intrinsic exchange rates from the model compounds (Englander et al., 1972; Bai et al., 1993). The data presented here indicates faster exchange rates for the exposed NH group than the exposed side chain NH₂ groups. O-protonation mechanism, imidic acids intermediates mechanism for acid-catalyzed proton exchange of amide groups in peptides and proteins are proposed for the mechanism of proton exchange of amide groups, which require the involvement of both carbonyl oxygen and nitrogen atoms of amide groups and the accessibility of these both atoms (Tüschen & Woodward, 1985; Perrin, 1989). It is found that in crystal structures there is a water molecule forming hydrogen bonds to both the carbonyl oxygen and amide nitrogen atoms with the amide proton involved in a three-center hydrogen bond, or a internal water molecule inserting into α-helix forming a hydrogen bonded bridge between the back-
bone carbonyl oxygen and amide nitrogen atoms. This structure with three-center hydrogen bonds, an insertion of a water molecule can be regarded as folding intermediates (Sundraralingam & Sekharudu, 1989). The observation of the faster exchange for NH groups in the backbone at the termini of the helices could be relevant to this finding in crystal structure of the three-center hydrogen bond with a water because this structure appears to be an ideal situation for the O-protonation mechanism for the acid-catalyzed hydrogen exchanges of amide groups (Tüchsen & Woodward, 1985).

The question is whether there are water molecules with longer residence times near such amide groups with faster chemical exchanges, or the residence time of water molecules are associated with the exchange rates of amide groups. Although protons showing negative NOEs close to such NH groups could be found, it is not possible to separate NOEs from “long-lived water molecules, or NOEs via chemically exchanging labile protons with water for such amide protons because of the presence of the labile protons in its vicinity. However, the exposed side chain amide groups of dh434(0–63) in which both carbonyl oxygen and nitrogen atoms are solvent-accessible and could easily form a three-center hydrogen bonds with a water do not show predominantly chemical exchange peaks in both ROE and NOE spectra. This might imply that not only the geometry and the solvent-accessibility for water molecules but also the longer residence time of water molecules could be needed for the chemical exchange process. It is quite natural to expect water molecules transiently inserted into helices and turns to have longer residence times in aqueous solution due to their hydrogen bonds. In fact such water molecules was observed in aqueous solution by NMR spectroscopy (Clore & Gronenborn, 1992). For side chain amide groups because of the rapid motion of side chain conformation which is also coupled with water dynamics, water could not stay long enough to cause hydrogen exchanges.

One can speculate that such water molecules of long-residence times could be negative entropy effects for the solvation energy (Dunitz, 1994). Cosolute such as ions stabilizing proteins might force water molecules around the backbone amide groups in the flexible loop and turns to stay longer. In unfolded states proteins are largely flexible polypeptide chains. More ordered water molecules, i.e. long-lived wa-
ter molecules around the backbone amide in such large region of the polypeptide chain as well as hydrophobic hydration would contribute as large negative effects in unfolded state. This would result in the increase of the free energy of the folded protein. Such unfavorable hydration effects on the backbone in unfolded states can be a driving force of the early events of protein folding as well. This speculation is in line with the observation of preferential hydration and dehydration of proteins by cosolutes (Timasheff & Arakawa, 1989), but contradicts to a conclusion from other studies that the entropy of hydration of polar groups is negligibly small and can be ignored in protein folding (Murphy & Freire, 1992; Murphy et al., 1995; Lee et al. 1994; Spolar & Record, 1994). However, the importance of the hydration of polar groups to the entropy of proteins is also demonstrated (Makhatadze & Privalov, 1996).

Alcohol induced helix formation could be results from the solvation effects. The low polarity of alcohol is responsible for helix induction (Tanford, 1968; Nozaki & Tanford, 1971) and increases the interaction with hydrophobic side chains with alcohol decreasing the hydration effects of side chains. This could change the balance of the entropic contribution between side chains and backbones. As a result the hydration effects on the backbone will be dominant unfavorable entropy effects. Such unfavorable entropy effects would lead to secondary structure formation such as α-helix or, β-hairpin to decrease the unfavorable hydration effects on the backbone amide groups. Alcohol-induced formation of some conformations is observed for many peptides (Sönichen et al., 1992; Dyson & Wright, 1993; Jasanoff & Fersht, 1994; Blanco et al., 1994). It might be able to predict that for peptides with only polar side chain, alcohol would not necessarily induce helices when there is no specific side chains interactions. From this viewpoint it can be postulated that denaturants such as guanidium chrolide and urea would interact with the backbone amide groups dominantly to reduce the unfavorable hydration effects on the backbone amide in unfolded states by expelling water molecules resulting in keeping proteins denatured because larger volume and polar chemical structure of the denaturants would preferably interact with amide groups and could reduce the negative entropy effects from the hydration considering that water is the smallest polar liquid. This could be supported by some observations that urea and guanidium chrolide can slow proton exchange rates (Kim & Woodward, 1993; Mori et al., 1997). Denaturants
might be able to induce helical conformation for polar peptides depending on the balances between the enthalpy and entropy contributions and between side chain and backbone contributions (Hagihara et al., 1993; Mayr & Schmid, 1993).

It seems that solvation, or hydration effect has to be considered separately for the backbone and side chains. The entropical contribution of the backbone amide groups needs reinvestigation.

It is well anticipated that flexible loop, turn, and tails are more susceptible for proteases (Fontana et al., 1986, 1989; Novotony & Brucoleri, 1987). It is possible to speculate that necessary water molecules for catalytic reaction are delivered from the long-lived water molecules near the backbone amide groups in the turn, flexible loops. Not only the steric hindrance from the rigid parts of proteins but also hydrated water molecules in the flexible loop and turns might be responsible for the susceptibility to proteases. The investigation of the correlation between the effects of cosolutes on the susceptibilities to proteases and the backbone hydration would be beneficial for the elucidation of the functional role of hydration water molecules for enzyme activities.

Not only formation of secondary structures but also molecular association such as aggregation, precipitation can reduce such unfavorable hydration effects.

3.5. Conclusions and outlook

In this study for the first time the large part of the surface hydration shell of a protein was characterized at atomic resolution in aqueous solution by NMR spectroscopy. Based upon the this study, it might be possible to answer some questions described in Chapter 2.

Location of water molecules & structure of the hydration shell

The large part of the protons near the surface indicate the evidence of short-lived water molecules, which is also an intuitive picture of a protein surrounded by water molecules. The hydrophobic effect is often attributed to the ordering of water molecules around hydrophobic groups although the origin of the hydrophobic effects is still unclear (Frank & Evans, 1945; Klotz, 1958; Tanford, 1980). The observation of ordered water molecules around hydrophobic residues found in crystal structures is
generally used as supporting evidence for the concept of “iceberg”, or “freezing of water molecules” around hydrophobic groups (Blake, 1983; Teener, 1984). The important question is whether water molecules around hydrophobic residues are more ordered than around hydrophilic side chains in aqueous solution. Previously the observation of negative NOEs between water molecules and methyl groups was speculated as ordered pentagonal water molecules rotating with methyl groups (Ernst et al., 1995a). Our observation of positive NOEs for majority of methyl groups on the surface indicates that seems not to be the case in general. If the ordering of water molecules around hydrophobic groups occurs, the life time of such ordered water molecules must be much shorter time scale of less than ~300 psec.

Difference of water structures between around the non-polar and the polar group?

The statistical analysis of the estimated life times of water molecules by NMR may indicate that the residence time of water molecules are shorter for polar groups than non-polar groups. The precision of the estimation of water molecules remains unclear. Statistical analysis of hydration patterns of proteins in single crystals indicated a predominant interaction with main chain atoms rather than side chain atoms (Thanki et al., 1988; Thanki et al., 1991). We have observed water-protein interactions both around the backbone atoms and around the side chain atoms indicating that both are equally hydrated. NMR does not require well ordered side chains and water molecules to detect interactions between them. Hence the less observation of hydration water molecules around side chain atoms in crystals may be a consequence of the technique rather than the representation of the actual hydration feature of proteins. From NMR data there is no clear indication of longer residence time of water molecules around the backbone atoms as compared to side chain hydration. However, the faster exchange rate for amide protons in the terminal site of helices, loop and turns than for side chain amide groups are observed, which might be an indication of water molecules with longer residence times in such regions. The relevance between residence time of water molecules and proton exchange phenomenon have to be investigate to clarify this speculation.
The detailed hydration geometry at the interface.

All the protons of negative NOEs have at least one labile proton within a distance of 5Å. Such labile protons can always be attributed to the origin of negative NOEs rather than long lived water molecules. However, a few negative not positive NOEs are observed in close proximity of the cavities found in 10 NMR conformers out of the 20 NMR conformers of dh434(0–63). Therefore such NOEs can be due to long-lived water molecules. Since short-lived water molecules are observed for both polar and non-polar groups, the residence times of water molecules are determined by geometrical features rather than preferential binding to specific amino acids types.

Movement of water molecules and dynamics of water molecules at the surface of proteins.

The indication of short-lived water molecules covered the large parts of the surface of the protein suggesting that hydration water molecules on the surface are highly mobile possibly with residence time of less than 300 psec.

Relevant time scale for understanding a particular process, or biological function and coupling of the water dynamics and dynamics of the macromolecules.

The finding of short-lived water molecules covering of the nearly entire protein is a strong indication that the dynamics of surface water molecules are also coupled with the flexible surface structure of proteins. The view of a dynamical surface structure in aqueous solution is supported by the three-dimensional structures determined by NMR methods and by NMR relaxation data (Glushko, 1972; Richarz, 1980; Wüthrich, 1996). Considering the requirement of a certain hydration for catalytic activities of enzymes, the hydration is playing an important role in providing proteins by giving a flexible matrix on the protein surface.

Do we learn enough about the protein hydration to explain the behavior of a particular system, not only at the molecular level such as protein-substrate binding, protein folding, but also on the increasingly important mesoscopic scale such as pro-
tein aggregation, fibrious formation?

Of course, it is not possible to obtain definitive answer to such general biological process concerning hydration from a single data. However, the speculation derived from the possibility of long-lived water molecules around rapidly exchanging backbone amide protons might be relevant to such process. Long lived water molecules around the flexible backbone amide groups could be negative entropy effects, which might be one of driving forces for the formation of secondary structure, aggregation, precipitation, fibrious formation because all of such processes can reduce such unfavorable entropy effects.

Further characterization of the water-protein interaction with NOEs and proton exchange by NMR in different solvent conditions and improvement in determination of the precise residence times of water molecules would provide possibility to shed light on the effect of various cosolutes and denaturing agents on the structure and dynamics of the hydration of a protein in aqueous solution. NMR spectroscopy has great advantage for such studies because NMR spectroscopy can deal with various solution conditions. Since the difference of hydration pattern between around polar and non-polar groups could not be detected, in particular, more precise and sensitive methods for such times scale might be necessary. The relevance between hydrogen exchange and residence time of water molecules should be investigated in various conditions. It is also probably helpful to approach this problem by computer simulation such as molecular dynamics to assess the obtained experimental data. In any case such further studies will lead to the better understanding of the molecular mechanism of the hydrophobic effects, protein aggregation, protein solubility, protein folding and denaturing agents which are originating from the water structure on the proteins surface.
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

4.1. Introduction

The large quantities of recombinant proteins which can be obtained from bacterial expression systems are an important prerequisite for biophysical characterization of proteins and three-dimensional structure determination. In particular, protein NMR spectroscopy has been largely developed by using isotope-labelled proteins for multidimensional heteronuclear techniques, which are usually prepared from bacterial cells. One of the difficulties in the study of the surface hydration by NMR spectroscopy is the weak signals originating from the surface hydration water molecules. Large quantities of highly soluble proteins are therefore required for the study of surface hydration of proteins to gain the sensitivity. In addition isotope-labelled proteins are of advantage to resolve the overlapping of the signals in the proton dimension. In this chapter, the construction, overproduction, and purification of variants of the DNA binding domain of 434 repressor, 434(1–63), and P22c2(1–76) by E.coli expression system are described.

4.2. Description of the expression system

For the overexpression of the wild-type protein and variants of 434(1–63), a promoter system based on the T7 RNA polymerase is used which is a very active enzyme and very selective for specific promoters that are rarely found in DNA unrelated to T7 DNA (Chamberlin, et. al., 1970; Dunn & Studier, 1983). The bacterial host for cloning and expression is the E.coli B strain, BL21(F−, ompT, rB−mB−), which has been extensively used here. BL21 is deficient in the lon protease and it also lacks the ompT outer membrane protease. For all expression experiments a derivative of E.coli BL21 was used which had been infected with the bacteriophage DE3, a λ derivative with a DNA fragment containing the lac gene, the lacUV5 pro-
moter, the beginning of the lacZ gene, and the gene for T7 RNA polymerase. Once a DE3 lysogen is formed, the production of T7 RNA polymerase is inducible by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG). A basal level of T7 RNA polymerase in E.coli BL21(DE3) can be almost completely eliminated by co-transformation with plasmids encoding T7 lysozyme, which is a natural inhibitor of T7 RNA polymerase. T7 lysozyme can be co-expressed by the plasmids pLysS (for low level of lysozyme) and pLysE (for higher level of T7 Lysozyme) both containing chloramphenicol resistance. However for expression of none of the variants of 434(1–63) and P22c2(1–76), it was necessary to reduce the basal level of T7 RNA polymerase, presumably because the proteins are not toxic to the cells. Thus E.coli BL21(DE3) without pLysS nor pLysE was used throughout for overproduction of all variants of 434(1–63).

The vector plasmid pT7-7 was used to express variants of 434(1–63) and P22c2(1–76) in E.coli. pT7-7 is a derivative of pT7-1 (Tabor & Richardson, 1985). This vector contains the T7 promoter, a polylinker sequence for cloning, the T7 gene 10, ColE1 origin, and the ampicillin resistant gene (Tabor, 1990; see also Appendix A).

4.3. Methods for mutagenesis

In vitro mutagenesis has become a standard tool for the functional analysis of proteins. In particular in vitro site-directed mutagenesis is a powerful method to understand contribution of each amino acid on the stability of a protein. Many mutagenesis methods have been developed for this purpose. Oligonucleotide-directed mutagenesis is one of methods to introduce mutations, insertion, and deletion at any positions. Several methods were applied for the preparation of variants of 434(1–63). The in vitro mutagenesis methods used in this study are the following.

PCR based site-directed mutagenesis
- Overlap extension method
- Modified overlap extension method
- Inverse PCR method
- Gene synthesis by PCR

Non-PCR based site-directed mutagenesis
- Kunkel methods
- Synthetic oligonucleotides.
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

4.3 PCR based site-directed mutagenesis

PCR based site-directed mutagenesis is probably the easiest and fastest method to introduce mutations at any arbitrary site in vitro. PCR reactions require a few hours to introduce a series of mutations in the gene. Therefore it can be easily and quickly achieved to modify the protein.

Overlap Extension Method

Overlap extension method is an orthodox procedure for introducing a mutation with PCR (Higuchi, 1991). Briefly the procedure is as follows. One mutagenesis requires four oligonucleotides (I, II, III, and IV in Figure 4-1). One mutation of the gene can be introduced as mismatches in the synthetic oligonucleotides (II and III in Figure 4-1). The oligonucleotides II and III in Figure 4-1 have a complementary sequence to each other so that the two PCR products produced by the oligonucleotides I and III, and by the oligonucleotides II and IV can form a heteroduplex and be extended to the full length of the target gene by DNA polymerase. This PCR product can be again amplified by PCR with the two oligonucleotides I and IV. The final PCR product will contain a mutation as introduced in the synthetic oligonucleotides.

Modified Overlapping method

PCR based site-directed mutagenesis with synthetic oligonucleotides such as overlap extension method and inverse PCR method requires at least two oligonucleotides per one mutation. This is a rather expensive way to produce a large number

Figure 4-1: Schematic drawing of the mutagenesis procedure by PCR overlap extension method (Higuchi, 1991).
of mutations at many different sites, whereas the modified overlap extension method requires the minimum of four oligonucleotides for one procedure but only one oligonucleotide per one mutation (Figure 4-2) (Ito et al., 1991). This method is particularly suitable for making a large number of mutants (>2) at many different positions. The procedure requires two steps as in the overlap extension method. The difference is that the final PCR product contains two PCR products (Figure 4-2). One contains the desired mutation but no mutation in the restriction site used for cloning. The other product contains no mutation in the position of the target but a mutation in the restriction site. Therefore only the PCR product having the desired mutation can be digested by the restriction enzyme and ligated into the plasmid (Figure 4-2). This method was used for the construction of the mutants at the salt-bridge of 434(1–63) (Siegal, to be published).
Inverse PCR

The overlap extension method and methods derived from it require two PCR steps and at least four oligonucleotides per one mutation. So-called inverse PCR method needs only one PCR step and two oligonucleotides. It is also easy to introduce deletions and insertions with this method. However, the inverse PCR method needs the complete plasmid to be amplified by DNA polymerase and blunt-end ligation (Figure 4-3). High-fidelity of DNA polymerases is necessary for this relatively long PCR. Hence Pfu DNA polymerase is often used for this method because of its high-fidelity (Error rate: 1.3×10^{-6}) (Flaman, et al., 1994). However, the high-fidelity of DNA polymerase is usually achieved by its proofreading activity which includes a 3'-5' exonuclease activity, that may lead to a certain level of primer degradation. Therefore, the plasmid produced by inverse PCR methods tends to have deletions near the ligation sites depending on the design of the primers.

PCR based gene synthesis

Polymerase chain reaction (PCR) has become an indispensable tool for cloning and mutagenesis of the genes. It is also possible to synthesize relatively large DNA fragments by PCR (Figure 4-4) (Dillon & Rosen, 1990; Ye et al., 1992; Prodromou & Pearl, 1992; Graham et al., 1993; Casimiro et al., 1995). There are several advantages of using gene synthesis for introducing a large number of mutations into a gene although the gene synthesis with synthetic oligonucleotides is often more costly than cloning from genomic libraries (Casimiro et al., 1997). The codons can be optimized for the specific hosts in order to maximize the level of expression. The ‘rare’ codons that reduce the expression level can be avoided (Kane, 1995). In addition any

![Figure 4-3: Schematic drawing of the mutagenesis procedure by inverse PCR method.](image-url)
kind of mutations, insertions, and deletions can be introduced rapidly and easily by substitution of a cassette of the oligonucleotides when single restriction sites were incorporated into the synthetic gene.

Kunkel method

The Kunkel method for site-directed mutagenesis uses uracile-containing single-stranded DNA as a template (Kunkel et al., 1985). The principle is the following. Uracile-containing single-stranded DNA of the expression plasmid is prepared from M13k07 phages which had infected a dut-ung E.coli strain that partially incorporates U instead of T into its DNA. Oligonucleotide primers containing mismatches for mutations can be hybridized to this uracile-containing single-stranded DNA and extended by DNA polymerase to produce the other DNA strand. The DNA template containing uracile is then lost by delayed replication in an E.coli wild type host, yielding the plasmid containing the mutation.

Direct incorporation of synthetic oligonucleotides.

Direct ligation of synthetic oligonucleotides into the gene of interest is the simplest and straightforward way to introduce mutations when suitable restriction sites are available, which has been used for mutagenesis before the invention of PCR. Suitable restriction sites near the target site are necessary for the method. This is unlikely to happen very often by chance. However, unlike the other PCR based mutagenesis, the mutation does not rely on the mismatches introduced on the

Figure 4-4: Schematic drawing of the gene synthesis by PCR.
oligonucleotides. This approach can be very useful in some cases in particular when combined with other mutagenesis methods.

4.4. Preparation of a chimeric DNA binding domain of 434 repressor and P22c2 repressor

The three-dimensional structures of the DNA binding domain of 434 repressor and P22c2 repressor share a similar backbone conformation (Figure 4-5 and Figure 4-6). This similar backbone conformation tempts to make a chimeric protein as it has been reported by Wharton & Ptashne with the experiment of the helix swapping (Wharton & Ptashne, 1985). 434(1–63) contains 4 serines in the first helix. Thus, it is a reasonable approach to replace the first helix of 434(1–63) with that of P22c2(1–76) to construct a variant of 434(1–63) without hydroxyl groups for the hydration study. In addition there are unique restriction sites which allow to replace the DNA sequence of the first helix easily (Figure 4-7). A hybrid protein P22/434(0–63) was designed based upon these features. In Figure 4-6 the position of the helix in the amino acid sequence of P22c2(1–76) is indicated in blue in the structure of 434(1–63). The residues 1–9 of 434(1–63) were replaced with the residues 5–13 of P22c2(1–76) considering the structural homology of both proteins (Figure 4-6).

Construction of the chimeric protein P22/434(0–63)

Two complimentary oligonucleotides corresponding to residues 5–13 in P22c2(1–76) were synthesized of which sequences were to fit the restriction sites of 434(1–63) as depicted in the restriction map of the gene of 434(1–63) in Figure 4-7. These two synthetic oligonucleotides were annealed after phosphorylation at the 5’ ends by

\[
\begin{align*}
434 (1–63) & : \text{SISSRVKSKRIQLGLNQAE}LAQKVGTTOOSIEQOLENGKT \text{K} - \\
P22c2 & : \text{MLMGERIRARRK}KLIRQAOAALGKMGVSNVAISQWERSETEP
\end{align*}
\]

\[
\begin{align*}
434 (1–63) & : \text{RPRFLPELASALGVSV}DWLLNGT \\
P22c2 & : \text{NGENLLALSKALQCSP}DYLKGD
\end{align*}
\]

Figure 4-5: The amino acid sequences of 434(1–63) and P22c2(5–68). The positions of the helices are indicated by underlines. The amino acids containing hydroxyl groups in 434(1–63) are shown in bold.
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

polynucleotidokinase and directly ligated into the plasmid pT7-7/434A which had been digested with the restriction enzymes NdeI and EcoRI. The ligation mixture was transferred into E.coli DH5α cells and plasmids from individual clones were screened by DNA sequencing.

Expression & purification of P22/434(0–63)

E.coli BL21(DE3) was transformed with the constructed plasmid, termed p2434,
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63) for overproduction of the chimeric protein in E.coli. The protein was expressed in either LB media or the minimal media (see Materials) supplemented with 15NH$_4$Cl for 15N labeled samples. For expression of P22/434(0–63), E.coli BL21(DE3) with the plasmid p2434 were grown at 37˚C until the OD$_{600}$ reached approximately 1.0, followed by induction with IPTG at the final concentration of 0.5 mM for 6 hours. The cells were harvested and lysed by a french press at 15000 psi 2–3 times. The theoretical pI of P22/434(0–63) was calculated to 10.5 indicating a basic protein and a value close to that of 434(1–63) (10.2). The supernatant of the cell lysate after the centrifugation (17,000 rpm, SS-34 rotor, 1 hour, 4˚C) was applied to an SP-Sepharose column (SP-Sepharose® Fast flow, Pharmacia) which was pre-equilibrated with 50 mM sodium acetate pH 4.8, 2 mM EDTA, 1 mM β-mercaptoethanol, 1 mM Pefabloc® SC (PENTAPHARM AG, Basel), 50 mM NaCl. P22/434(0–63) was eluted by a linear gradient from 10 mM to 500 mM NaCl in the same buffer and fractions were analyzed by SDS-PAGE. All relevant fractions were pooled and dialyzed against distilled water extensively. The solution was diluted with the initial buffer 2 times and loaded on the cellulose phosphate ion-exchanger column (Whatman P11, No. 4071010) which was pre-equilibrated with 50 mM K-phosphate pH 7.3, 50 mM NaCl. The protein was eluted by a linear gradient from 50 mM to 500 mM NaCl (Figure 4-8A). The fractions were collected and analyzed by SDS-PAGE (Figure 4-8B). Fractions containing the homogenous protein were dialyzed against distilled water extensively and lyophilized. The N-terminal amino acid sequence of the puri-
fied protein was analyzed by Edman degradation to confirm the purity and the sequence of the N-terminal 11 residues. It was found that P22/434(0–63) contains an additional methionine residue originating from the start codon which does not exist in 434(1–63). In Figure 4-9, the $^{[15N,1H]}$HSQC spectrum of P22/434(0–63) is shown with the backbone assignments. Many positions of the peaks in the $^{[15N,1H]}$HSQC spectrum are unchanged as compared with 434(1–63). For example, Asn16, Gln17, Gln28, Gln29, Gly37, Phe44 are virtually in the same position as found in 434(1–63) suggesting that there is no large structural changes caused after the helix exchange.

4.5. Preparation of des-hydroxyl 434(0–63)

The overall goal was to eliminate all hydroxyl groups from 434(1–63) for the unambiguous characterization of the surface water molecules by NMR spectroscopy (see Chapter 3). 4 serines in 434(1–63) were already successfully eliminated from 434(1–63) by making a chimeric protein with P22c2(1–76) based on the structural homology between P22c2(1–76) and 434(1–63). Interestingly the resulting chimeric protein has a higher stability than that of wild-type 434(1–63) (see Chapter 5).
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

Hence further mutations were decided to be introduced into this hybrid protein P22/434(0–63). P22/434(0–63) still contains 7 hydroxyl groups. It is laborious and cumbersome to replace all the residues containing hydroxyl groups one by one using oligonucleotide-directed mutagenesis because all the other serines and threonins are distributed in the primary structure (Figure 4-5). Therefore, PCR based gene synthesis was applied for the construction of the plasmid for des-hydroxyl 434(0–63).

Gene construction of des-hydroxyl 434(0–63)

PCR based gene synthesis was applied for the construction of the plasmid of dh434(0–63). Four synthetic oligonucleotides were designed (Figure 4-10). Each of the oligonucleotides contains overlapping regions (13–15 bp) as illustrated in Figure 4-10A. In a first reaction the four oligonucleotides were mixed, annealed, and elon-
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

4.5

...gated by Taq polymerase (Figure 4-4; Figure 4-10). The 1st reaction mixture was then used as a template and amplified with the primers HI-11 and HI-1 yielding the complete gene.

The details of the experiments are the following: All oligonucleotides were synthesized on Applied Biosystems 308B DNA synthesizer at 0.2 μmol scale. The oligonucleotide HI-12 was purified using HPLC with a Nucleosil 300-5 C8 column. The first PCR contained 35 pmol of each of the four synthetic oligonucleotides, 2 μl of 25 mM dNTP, 4 μl of 100 mM MgCl₂ and the buffer supplied with the enzyme in the final volume of 100 μL. The solution was kept for 10 min at 94 °C, then slowly cooled down to 37 °C for 30 min and held at 37 °C for 10 min for annealing. 5 units of Taq polymerase were then added and heated to 72 °C for 3 min. The reaction was followed by 5 cycles of 1 min at 95 °C, 2 min at 55 °C, and 1 min at 72 °C. The reaction was completed with a 5 min incubation at 72°C. The products were analyzed on a 1.2 % agarose gel (Figure 4-11A). Then 5 μL of this reaction mixture were transferred to the second PCR tube containing 35 pmol of the two oligonucleotides HI-1 and HI-11. The final 100 μL mixture contains 1 mM of each of dNTP, 5 units of Taq polymerase (Perkin-Elmer) in of 20 mM Tris-HCl (pH 8.4), 50 mM KCl. The second reaction involved a start at 95 °C for 1 min followed by 10 cycles of 1 min at 95 °C, 2 min at 55 °C and 1 min at 72 °C, and completed with a 5 min at 72 °C Figure 4-11B).
All PCR reactions were carried out on a Perkin-Elmer DNA Thermal cycler. The PCR product was purified by a PCR purification kit (QIAGEN) and then digested with EcoRI and Hind III. The digested DNA fragment was finally cloned into the plasmid p2434, in which the corresponding parts were removed by digestion with EcoRI and Hind III. *E. coli* DH5α (Gibco BRL) was transformed with the ligation product and positive clones were identified by restriction digestion making use of a newly engineered restriction site. The DNA sequence of the complete gene was determined by the chain termination method with T7 polymerase (United States Biochemicals). This plasmid is termed pALLE. The protein from this plasmid, i.e. the 434 variant lacking all residues with hydroxyl groups, was named [R50A]-des-hydroxyl 434(0–63) (in short notation, [R50A]-dh434(0–63)) in order to differentiate the protein from the variant with the additional mutation A50R, which was termed dh434(0–63).

Expression & Purification of [R50A]-dh434(0–63)

Expression and purification procedures for [R50A]-dh434(0–63) are essentially identical to those described for 434(1–63). The purification consists of two steps. The first step is cation exchange column chromatography using SP-Sepharose Fast flow (Pharmacia). The second step is also cation exchange chromatography on phosphate cellulose P11 (Whatmann). Several modifications were applied to the previous purification method of P22/434(0–63) as the pH of the buffers and the salt conditions were slightly changed. *E. coli* BL21(DE3) transformed with pALLE was grown at 37 °C in LB medium until the OD$_{600}$ reached approximately 0.6. Cells were induced with IPTG (final concentration: 0.5 mM) for 6 hours. The cells were then harvested and lysed by a french press at 15000 psi. The supernatant from the cell lysate after the centrifugation (17000 rpm, SS34 rotor, 4 °C, 1 hour) was loaded onto the SP-Sephasose column which was pre-equilibrated with 50 mM sodium acetate pH 4.1, 1 mM EDTA, 1 mM β-mercaptoethanol, 1 mM Pefabloc SC, 10 mM NaCl. The protein was then eluted by a linear gradient from 10 mM to 500 mM NaCl in the same buffer and analyzed by SDS-PAGE. All relevant fractions were pooled, dialyzed against distilled water extensively and lyophilized. The typical yield was 10–20 mg/liter bacterial culture. The complete amino acid sequence of the purified protein was
confirmed by Edman degradation procedure. The molecular mass of [R50A]-434(0–63) was also verified by electrospray mass spectrometry. In Figure 4-12 the mass spectrum of the recombinant protein is shown. It is in very good agreement with the expected molecular mass of 7037.22 Da (measured: 7036.0).

Light Scattering for detection of the aggregation

Unfortunately, slightly broadened lines were observed in the NMR spectra of [R50A]-dh434(0–63). Therefore the associate state of the protein was analyzed on a dynamic light scattering instrument (DyanaPro-801, Proteinsolution Inc.). In principle light scattering measurements provide several parameters indicating the state of the solution such as radius, estimated molecular mass, and polydispersity. The baseline of 1.000 and SOS (Sum of Squares) error < 5.000 should be observed in the case of 100% single size distribution (DYNAPRO-801 operator manual). The light scattering data of a 1 mM solution of [R50A]-dh434(0–63) in 20 mM K-phosphate pH 5.6 indicated a radius of 3.2 nm, a polydispersion of 1.719 nm, an estimated molecular weight of 48 kDa, and a SOS error of 16.551, suggesting significant aggregation. Addition of NaCl to a final concentration of 800 mM improved the situation yielding a radius of 1.7 nm, a polydispersion of 0.504, an estimated molecular mass of 12 kDa, a baseline of 1.001, and a SOS error of 1.696. Thus the aggregation was dramatically reduced at increased ionic strength. This can also be observed by the sharp resonance peaks in the 15N, 1H- HSQC spectrum of [R50A]-dh434(0–63) con-
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

4.5

It appears that $[R50A]$-dh434(0–63) tends to aggregate in the solution with low salt concentration as indicated by the dynamic light scattering experiments. This aggregation can be suppressed by addition of high concentration of NaCl. However, such additives could complicate the interpretation of the results of the hydration study obtained by NMR and decrease the sensitivity of NMR experiments which is a crucial point for the surface hydration study by NMR (Chapter 3). Therefore, an additional amino acid replacement was introduced in order to reduce the aggregation of $[R50A]$-dh434(0–63). Because of a number of hydrophobic residues such as alanines were introduced in the 434(0–63), the created hydrophobic surface might be a cause of this aggregation. Inspection of the three dimensional structure of 434(1–63) reveals that Ser50 has the highest solvent accessible surface among the positions of which side chains were replaced except for the termini (Table 6-6). A sin-

Figure 4-13: $[^{15}N,^{1}H]$-HSQC spectrum of $[R50A]$-dh434(0–63) at pH 5.0 and 13˚C in 25 mM K-phosphate and 600 mM NaCl.
gle mutation at this position was applied in order to improve the behavior of the protein based on this consideration. Arginine was chosen for this replacement because its positive charge should further facilitate the purification by ion exchange column and since a homologous protein 434Cro has also a positively charged residue at the same position (see Appendix H).

For the introduction of the mutation A50R, the modified overlap extension method was applied by using the oligonucleotides which were used for the mutations at the buried salt-bridge in 434(1–63) (Ito et al., 1991; Siegal et al., to be published). In Figure 4-12 and Figure 4-14 the scheme of this procedure is illustrated. This method was selected because the three oligonucleotides had already been available in the laboratory and only one more oligonucleotide had to be synthesized. For the first PCR step two reactions were prepared. The first one contained 50 pmol of each of
the oligonucleotides GS-12 and H1-1, 8 μl of 10 mM dNTP, 8 μl of 25 mM MgCl₂, 1 ng of the plasmid pALLE as a template, and 10 μl of the buffer supplied with the enzyme in the final volume of 100 μL. The other reaction contained 50 pmol each of the oligonucleotides GS-10 and H1-9, 8 μl of 10 mM dNTP, 8 μl of 25 mM MgCl₂, 1 ng of the plasmid pALLE as a template, and 10 μl of the buffer supplied with the enzyme in the final volume of 100 μL. 2.5 units of Taq polymerase were then added to each of the reaction tubes and heated to 95 °C for 1 min. The reaction was followed by 20 cycles with 1 min at 95 °C, 1 min at 50 °C and 1 min at 72 °C. The reaction was completed with a 5 min incubation at 72 °C. The resulting PCR products were analyzed on a 1.2% agarose gel and purified from a 1.2% agarose gel by the gel extraction kit (QIAGEN) (Figure 4-15A). Then 5 μL of the purified products were used for the second PCR step as a template. The final 100 μL mixture for the second PCR contained 8 μL of 10 mM dNTP, 8 μL of 50 mM MgCl₂, 50 pmol of the two oligonucleotides GS-10 and H1-1 in 20 mM Tris-HCl (pH 8.4) and 50 mM KCl. The second PCR involved a hot start at 95 °C for 10 min followed by slow cooling to 37 °C for 30 min and kept at 37 °C for 10 min. Then 2.5 units of Taq polymerase were added and heated to 72 °C for 3 min. The reaction was followed by 10 cycles with 1 min at 95 °C, 1 min at 55 °C, and 1 min at 72 °C, and completed with a 5 min incubation at 72 °C. The PCR product was analyzed on an agarose gel (Figure 4-15B) and purified by the PCR purification kit (QIAGEN). The 307 bp DNA fragment was digested with XbaI and Hind III and ligated into the plasmid pT7-7. The DNA sequence of the modified gene in the plasmid pGFC was determined by dideoxy sequencing with T7 DNA polymerase (USB) (see Appendix D).
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

4.5

Expression & purification of dh434(0–63)

E.coli BL21(DE3) harboring plasmid pGFC was grown at 37 °C in LB-medium or the 15N-supplemented minimal medium for isotope labeling until an OD600 of approximately 0.6 was reached, followed by induction with IPTG (final concentration: 0.5 mM) for 6 hours. The cells were harvested and lysed by a french press at 15000 psi. The extract was centrifuged at 35,000 rpm for 1 hour with an ultracentrifuge (Kontron). The supernatant was applied to SP-Sepharose column which was pre-equilibrated with 50 mM sodium acetate pH 4.1, 1 mM EDTA, 1 mM β-mercaptoethanol, 1 mM Pefabloc SC, 10 mM NaCl. dh434(0–63) was eluted by a linear gradient from 10 mM to 500 mM NaCl in the same buffer (Figure 4-16A). The fractions were analyzed by SDS-PAGE and the fractions containing the pure proteins were pooled for dialysis against water (Figure 4-16B). Typical yield of dh434(0–63) was 15–20 mg/liter bacterial culture. The complete amino acid sequence of the purified dh434(0–63) was confirmed by Edman degradation procedure. The dynamic light scattering data of a 1.8 mM solution of dh434(0–63) in 25 mM K-phosphate at
pH 5.3 indicated a radius of 1.5 nm, a monodisperse protein preparation with an estimated molecular mass 9 kDa, a baseline of 1.000, and a SOS error of 0.826. Thus, the introduction of the Arg side chain at position 50 completely abolished aggregation, even at low ionic strength. The mutant protein dh434(0–63) was further used for the structural analysis by NMR spectroscopy (Chapter 6) and for the hydration studies (Chapter 3).

4.6. Construction, expression, and purification of the DNA binding domain of P22c2 repressor(5–68)

The DNA binding domain of phage P22c2 repressor, P22c2(1–76), is homologous to 434(1–63) but has unstructured tails at the N- and C- terminus as determined by NMR (Sevilla-Sierra et al., 1994) (Figure 4-6). For comparison of its stability with that of 434(1–63) and its variants, P22c2(5–68) was constructed based on structure comparison in which the residues 1–4 and the last 8 residues were removed.

Plasmid construction, expression, and purification of P22c2(5–68)

Here the construction of the plasmid for expression of P22c2(5–68) is briefly
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

Described. The plasmid I/TP 125, bearing the whole P22c2 repressor gene, was used to derive the gene of P22c2(5–68) (Sauer et al., 1981). Two oligonucleotides were synthesized (Figure 4-17B). The first oligonucleotide contains the DNA sequence of residues 5–12 of P22c2(1–76). The second oligonucleotide contains the DNA sequences corresponding residues 62–68 of P22c2(1–76), a stop codon in the replacement of Leu69 and a HindIII restriction site (Figure 4-18). The two oligonucleotides were used to amplify the shortened gene by PCR. The 222 bp DNA fragment made by PCR was purified with agarose gel and digested with Ndel and HindIII and ligated into the plasmid pT7-7 yielding the plasmid pT7-7/4AF. Finally, E.coli BL21(DE3) was transformed with this plasmid for the expression of P22c2(5–68).

E.coli BL21(DE3) with plasmid pT7-7/4AF was grown at 37 °C in LB-medium until OD_{600} reached approximately 0.7 and induced with IPTG (final concentration: 0.5 mM) for 5 hours. The cells were harvested and lysed by a french press at 15000 psi. The supernatant after centrifugation (SS-34, 17000 rpm, 1 hour) was applied to a SP-Sepharose column which was pre-equilibrated with 50 mM sodium acetate buffer pH 4.8 containing 1 mM EDTA, 1 mM β-mercaptoethanol, 1 mM Pefabloc SC, and 150 mM NaCl. P22c2(5–68) was eluted from the SP-Sepharose column by a linear gradient from 150 mM to 1.0 M NaCl. All relevant fractions were pooled and dialyzed against distilled water extensively. This solution was loaded onto a cellulose phosphate column (Whatmann P11) which was pre-equilibrated with 50 mM K-phosphate pH 7.3, 30 mM NaCl, the protein was eluted by a linear gradient from 30

Figure 4-17: (A) Schematic drawing of the construction of P22c2(5–68). (B) DNA sequences of the primers. (C) The amino acid sequence of P22c2(5–68)
mM to 1.0 M NaCl in 50 mM K-phosphate pH 7.3 and fractions containing the pure protein were dialyzed against distilled water extensively and lyophilized. The typical yield of the protein was 50 mg/liter bacterial culture.

4.7. Overexpression and purification of an unstable 434 variant, [E35Q]-434(1–63)

Site-directed mutagenesis is a powerful method to characterize the contribution of the individual side chains to protein stability and the biological activities of proteins. However, a single mutation often results in low stability, poor expression of a mutant protein, proteolysis after translation and possibly toxicity of a protein variant. Particularly when the side chain has an important role for the stability of the native structure, variants may be poorly or not longer be expressed mainly because of the lowered stability makes the protein more susceptible to proteolytic degradation in vivo.

There is a single buried salt bridge in the structure of the 434 repressor between Arg10 and Glu35 (Mondragon et al., 1989). A series of mutations was performed to characterize the role of this buried salt bridge (Siegal et al., to be published; Pervushin et al., 1996). Figure 4-19 shows an SDS-PAGE analysis of the variants of both [E35Q]-434(1–63) and [R10M]-434(1–63) after the induction by IPTG for 0–3 hours. The expression of [E35Q]-434(1–63) was found dramatically diminished compared with [R10M]-434(1–63) and the wild type protein. To improve the expression yield of [E35Q]-434(1–63) a new expression vector was developed where the gene encoding for [E35Q] variant was fused to the 3’ end of the wild-type 434(1–63) gene via a linker coding for a hexahistidine metal chelate affinity sequence and a methionine residue for subsequent cleavage of the fusion protein by cyanogen bromide (Figure 4-18). The fusion protein approach led to a strong increase in the yield of the expressed variant of the fusion protein level (Figure 4-19B). The expression was increased by a factor of more than 50 times compared with non-fusion [E35Q] variant judging from the band in SDS-PAGE. It was possible to purify on a Ni-NTA metal chelate affinity column despite the fact that affinity tag was introduced as a linker between 434(1–63) and [E35Q]-434(1–63) and not located at the N- or C- terminus. This histidine tag was also used for the separation of the wild type 434(1–63) from [E35Q]-434(1–63) after cleavage of the purified fusion protein by cyanogen bromide.
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

This expression system with 434(1–63) has now been tested with the variety of proteins such as hirudin and various variant of homeodomain of LFB-1 and even with wild type 434(1–63). These results indicate that the expression system using wild type 434(1–63) as a fusion partner constitutes a generally applicable expression system for expressing proteins which are otherwise difficult to be obtained from E.coli. The fusion protein vector is in particular of interest for reducing the costs of preparing isotope-enriched proteins for NMR studies.

Expression and purification of [E35Q]-434(1–63)

The restriction sites in the original plasmid pT7-7/434A were modified so that a protein of interest can be cloned into the new plasmid pT434HK by using the restriction sites NdeI and HindIII (Figure 4-18). The gene coding for the variant [E35Q]-434(1–63) was then cloned into the plasmid pT434HK yielding the plasmid pWT-A1 for expression of the fusion protein. The analogous plasmid with two copies of the wild type gene was termed p2WT.

The fusion protein, 434(1–63)–[E35Q]-434(1–63) was expressed in E.coli BL21(DE3). Cells were grown at 37 °C, induced with IPTG at OD600 = 1.0 to a final concentration of 1 mM and after 5 hours of induction harvested by centrifugation.
The stored cell pellet was lysed by a french press at 15000 psi. The extract was centrifuged (17000 rpm, SS34 rotor, 4 °C, 1 hour) after suspension in loading buffer (6 M GdmCl, 0.1 M NaH₂PO₄, 10 mM Tris-HCl pH 8.0). The viscous supernatant was loaded on a Ni-NTA resin (QIAGEN) for the purification and washed with the loading buffer until the absorbance of the elute at 280 nm reached a constant value. The protein was eluted with 8 M Urea, 0.1 M NaH₂PO₄, 10 mM Tris-HCl, and 250 mM imidazole at pH 8.0. The flow-through and the eluted fractions were analyzed by SDS-PAGE (Figure 4-19). The elute contains the his-tagged fusion protein with a purity of about 98% as judged by SDS-PAGE. Fraction containing the fusion protein were combined and extensively dialyzed against distilled water at 4 °C and lyophilized. The typical yield of the fusion protein 434(1–63)–[E35Q]-434(1–63) was 50 mg/liter bacterial culture.

The cleavage of the target protein from the fusion protein was achieved by chemical cleavage method with CNBr after the introduced methionine and the fact the 434(1–63) lacks methionins. 50 mg of the lyophilized fusion protein were dissolved in 4 ml of 70% (w/w) HCOOH. 5 ml (1 ml x 5) of 5 M CNBr solution in acetonitril (SIGMA) was added and incubated at room temperature for 24 hours. The reaction was stopped by adding 0.6 g of methionine and incubated at room temperature for 30 min. This reaction mixture was then dialyzed against distilled water. This solution was then diluted 3 times with the loading buffer (6 M GdmCl, 0.1 M NaH₂PO₄, 10 mM Tris-HCl pH 8.0) and again loaded onto the Ni-NTA column for the separation of the [E35Q] variant from the fusion partner and the un-cleaved fusion protein. The flow-through fractions were collected and analyzed by SDS-PAGE. The flow-through fractions contained more than 98% pure [E35Q]-434(1–63) as judged by SDS-PAGE analysis (Figure 4-19D). The final purification was performed by MonoS column (Pharmacia) equilibrated at 50 mM sodium acetate pH 4.8 with a salt gradient from 50 mM to 1.0 M NaCl. The final yield of [E35Q]-434(1–63) was about 10 mg after the purification. 1D ¹H NMR spectra of purified wild type 434(1–63) and the variant [E35Q]-434(1–63) are shown in Figure 4-20 and indicate large differences between the proteins. The poor dispersion of the signals of [E35Q]-434(1–63) as compared with 434(1–63) indicates almost complete unfolding (Figure 4-20). A further characterization of the stability of [E35Q]-434(1–63) was described in Chapter 5.
4. Preparation of variants of the DNA binding domain of Phage 434 repressor, 434(1–63)

Figure 4-19: (A) Expression of [E35Q]-434(1–63) and [R10M]-434(1–63) after the induction with IPTG. 0: before induction; 1,2,3: 1, 2, 3 hours after the induction, respectively. (B) Expression and purification of 434(1–63)-[E35Q]-434(1–63). M: marker, S: Supernatant, F: flow-through from the Ni-NTA column, E: Elution from the Ni-NTA column after washing with 250 mM imidazole. (C) Cleavage of the fusion protein by CNBr. (D) Purified [E35Q]-434(1–63).

Figure 4-20: 1D 1H NMR spectra of (A) [E35Q]-434(1–63) and (B) 434(1–63) at pH 4.8 in 50 mM K-phosphate buffer.
4.8. Materials

Buffer solution adjusted to pH 7.0-7.4 with NaOH.

\[
\begin{align*}
K_2HPO_4 & : 10.6 \text{ g/L} \\
KH_2PO_4 & : 4.9 \text{ g/L} \\
NaCl & : 0.5 \text{ g/L} \\
^{15}\text{NH}_4\text{Cl} & : 0.5 \text{ g/L} \\
\text{Minerals & Glucose #1} & \\
[D]-\text{Glucose} & : 4.0 \text{ g/L} \\
\text{Biotin} & : 1.2 \text{ mg/L (5 } \mu\text{M)} \\
\text{Vitamin B}_1 & : 2.3 \text{ mg/L (70 } \mu\text{M)} \\
\text{MgSO}_4 & : 123.2 \text{ mg/L (500 } \mu\text{M)} \\
\text{BH}_3\text{O}_3 & : 6.1 \text{ mg/L (100 } \mu\text{M)} \\
\text{FeSO}_4 & : 4.9 \text{ mg/L (35 } \mu\text{M)} \\
\text{ZnCl}_2 & : 6.8 \text{ mg/L (50 } \mu\text{M)} \\
\text{Minerals #2} & \\
\text{CaCl}_2 & : 100 \mu\text{M (100mM CaCl}_2\text{ stock solution 1ml/L)} \\
\text{Antibiotics} & \\
\text{Ampicilin} & : 50 \mu\text{g/L} \\
\text{Carbenicilin} & : 50 \mu\text{g/L}
\end{align*}
\]

4.8.2. Protein concentrations

All protein concentration of the variants of 434(1–63) was obtained by measuring the absorbance at 280 nm using \(\varepsilon = 5550 \).
5. Stabilities of variants of the DNA binding domain of phage 434 repressor

Variants of the DNA binding domain of 434 repressor, 434(1–63) were constructed and purified as described in Chapter 4. It is of interest to characterize the effects of the amino acid replacements on the stability of the protein. In this chapter the stabilities of variants were analyzed by using chemical denaturation and thermal denaturation monitoring CD (circular dichroism) signal. The mechanism of the stability changes for individual variants is discussed based on the three-dimensional structures of the proteins. This study may provide a strategy for the design of hyperstable proteins.

5.1. Thermal denaturation

CD measurement and analysis

The proteins were prepared as described in Chapter 4. 20 ~ 30 μM protein solutions were used for the CD measurements. All the CD measurements were performed with Jasco J-710 equipped with a water bath (RTE-100) using cuvettes with a path length of 1 mm. Thermal denaturation of variants of 434(1–63) containing a mutation at the position of the buried salt bridge between Arg10 and Glu35 was monitored by changes in circular dichroism at 222 nm in 2.5 °C steps. The samples were equilibrated for 1–2 minutes at each temperature and the signal was recorded for 3 min and averaged. The CD data was fitted according to the equation (1) to obtain the thermodynamical parameters. Since it is difficult to obtain a reliable value of ΔC_p from the experimental thermal denaturation curves, $\Delta C_p = 0$ was used for the curve fitting of the original data to calculate ΔH_m and T_m with the following equation (1).
5. Stabilities of variants of the DNA binding domain of phage 434 repressor

5.1

where \(y_{\text{obs}} \) is the observed circular dichroism; \(m_N \) and \(y_N \), \(m_U \) and \(y_U \) are the slope and the intercept of the pre- and post-transition baselines of the denaturation curve, respectively; \(\Delta H_m \) is the change in enthalpy at the midpoint of the denaturation temperature \(T_m \); \(\Delta C_p \) is the difference in heat capacity between denatured and native protein; \(T \) is the absolute temperature in Kelvin; \(R \) is the gas constant. The curve fittings were performed with program Kaleida graph (Abelbeck Software). For calculation of \(\Delta G \), \(\Delta C_p \) was calculated by using the value of 12 cal/mol/residues, i.e. 0.756 kcal mol\(^{-1}\)K\(^{-1}\) (Edelhoch et al., 1976; Pace et al., 1990). The temperature dependence of the free energy change of denaturation \(\Delta G \) is given by the following equation (Privalov, 1979).

\[
\Delta G(T) = \Delta H_m (1 - T/T_m) - \Delta C_p \left[(T_m - T) + T \ln \left(\frac{T}{T_m} \right) \right]
\]

For the analysis of the unstable mutant, [E35Q]-434(1–63), NaCl was added as stabilization reagent to measure \(T_m \) at the concentration of 2.5 M (Bowie et al., 1989). For the other variants thermal denaturation curves were recorded by monitoring CD at 222 nm using the Jasco software to control the water bath with a heating rate of 50 °C/hour. The melting temperatures \(T_m \) of the variants were determined from the maximum of the first derivative.

Variants of 434(1–63) with mutations at the salt-bridge

Variants of 434(1–63) with a mutation in the buried salt bridge between Arg10 and Glu35, were constructed (Siegal et al. to be published; see Chapter 4). In order to estimate the contribution of each residues to the stability, the thermal stability of variants was carefully measured. Since it was found that [E35Q]-434(1–63) did not fold properly judging from CD and NMR spectra (Figure 5-1 and Figure 4-20),
5. Stabilities of variants of the DNA binding domain of phage 434 repressor

5.1 The thermodynamic parameters were obtained at the presence of high concentration of the salt, namely 2.5 M NaCl (Bowie et al., 1989). The CD spectra recorded as different NaCl concentrations demonstrate that helical conformation is induced by the addition of the high concentration of NaCl (Figure 5-1).

For the comparison the thermal stabilities of 434(1–63), [R10M]-434(1–63), and [E35Q]-434(1–63) the thermal denaturation was also monitored at the presence of both 0 M NaCl and 2.5 M NaCl, of which thermal denaturation curves are shown in Figure 5-2.

Figure 5-1: (A) CD spectrum of 20 µM 434(1–63) in 100 mM K-phosphate pH 5.0. (B) CD spectra of 16 µM [E35Q]-434(1–63) in 100 mM K-phosphate pH 5.0 with different concentrations of NaCl (0 M, 1.0 M, and 3.0 M) at 30 °C.
Table 5-1 summarizes the thermodynamic parameters obtained by the analysis of the thermal denaturation curves of the variants of 434(1–63) at the two different concentration of NaCl. The high concentration of NaCl not only induced the helical conformation of [E35Q]-434(1–63) but also increased T_m of both 434(1–63) and [R10M]-434(1-63). However there is apparent difference in the CD spectra between

Figure 5-2: Thermal denaturation curves. (A) 45 µM wild-type 434(1–63) in 0 M NaCl and 2.5 M NaCl at pH 5.0. (B) 50 µM [R10M]-434(1–63) in 0 M NaCl and 2.5 M NaCl at pH 5.0. (C) 10 µM [E35Q]-434(1–63) with 2.5 M NaCl at pH 5.0.
5. Stabilities of variants of the DNA binding domain of phage 434 repressor

5.1

Stabilities of variants of the DNA binding domain of phage 434 repressor 75

wild-type 434(1–63) and [E35Q]-434(1–63) suggesting that the three-dimensional structures of 434(1–63) and [E35Q]-434(1–63) are not identical even at the presence of 2.5 M NaCl.

Table 5-1: Summary of the analysis of thermodynamic data for variants at the salt-bridge

<table>
<thead>
<tr>
<th>Protein</th>
<th>(T_m) (^{a}) (°C)</th>
<th>(\Delta H_m) (^b) (kcal/mol)</th>
<th>(\Delta G(25 :^\circ \text{C})) (^c) (kcal/mol)</th>
<th>(\Delta G(13 :^\circ \text{C})) (^d) (kcal/mol)</th>
<th>(\Delta (\Delta G)) (^e) (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>434(1–63) (0M NaCl)</td>
<td>68.6 ± 0.1</td>
<td>57.0 ± 0.8</td>
<td>5.1 ± 0.1</td>
<td>5.6 ± 0.2</td>
<td>-</td>
</tr>
<tr>
<td>[R10M]-434(1–63) (0 M NaCl)</td>
<td>61.9 ± 0.1</td>
<td>43.6 ± 0.7</td>
<td>3.2 ± 0.1</td>
<td>3.5 ± 0.1</td>
<td>-2.1 ± 0.1</td>
</tr>
<tr>
<td>434(1–63) (2.5 M NaCl)</td>
<td>85.1 ± 0.8</td>
<td>55.3 ± 2.1</td>
<td>5.2 ± 0.4</td>
<td>5.2 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>[R10M]-434(1–63) (2.5 M NaCl)</td>
<td>86.3 ± 0.9</td>
<td>52.4 ± 2.1</td>
<td>4.7 ± 0.4</td>
<td>4.6 ± 0.5</td>
<td>-0.6 ± 0.8</td>
</tr>
<tr>
<td>[E35Q]-434(1–63) (2.5 M NaCl)</td>
<td>76.8 ± 1.7</td>
<td>35.6 ± 2.6</td>
<td>2.2 ± 0.6</td>
<td>1.8 ± 0.6</td>
<td>-3.4 ± 0.8</td>
</tr>
</tbody>
</table>

\(^{a}\) Midpoint of the thermal unfolding curve.

\(^{b}\) \(\Delta H_m = T_m (K) \times \Delta S_m \), \(\Delta S_m \) is negative of the slope of \(\Delta G \) versus \(T \) at \(T_m \) in cal mol\(^{-1}\) K\(^{-1}\).

\(^{c}\) \(\Delta G \) was calculated based on \(\Delta C_p = 0.76 \text{ kcal/mol at the temperature } 25 \:^\circ \text{C and } 13 \:^\circ \text{C, respectively (see text).} \)

\(^{d}\) \(\Delta (\Delta G) \) is difference between 434(1–63) and variants of 434(1–63) in the same solution condition at temperature 13 °C.

Thermal stabilities of other variants

\(T_m \) of 434(1–63), P22c2(5–68), P22/434(0–63), and dh434(0–63) are summarized in Table 5-2. Remarkable increase of \(T_m \) for a hybrid protein P22/434(0–63) was observed by 12.6 °C as compared with 434(1–63). The lowest \(T_m \) among the 4 proteins was observed for P22c2(5–68). For the detail analysis of the thermodynamic parameters of these proteins the chemical denaturation was performed as described in Chapter 5.2.
5. Stabilities of variants of the DNA binding domain of phage 434 repressor

5.2 Chemical denaturation

CD measurement and analysis

Equilibrium chemical denaturation in GdmCl was monitored by CD (circular dichroism) at 222 nm with 20–30 μM samples at 13.0 °C with 50 mM sodium acetate pH 4.8. 8 M GdmHCl solution (PEACE) was used for these experiments. CD signals at each concentration of GdmCl were collected for 1 min–1.5 min and averaged for the analysis of the thermodynamic parameters. GdmCl concentration [M] was determined by a refractometry after the measurements with the following equation:

\[[M] = 57.147(\Delta N) + 36.68(\Delta N)^2 - 91.60(\Delta N)^3 \]

where \(\Delta N \) is the difference in refractive index between the denaturant solution and the buffer at the sodium D line. The data was fitted to a two-state transition model, as described by Pace et al. (1989) as following. The observed free energy of unfolding (\(\Delta G_{obs} \)) and the unfolding equilibrium constant (K_{app}) are related as \(\Delta G_{obs} (T) = -RT \ln K_{app} = -RT \ln \{(y_N - y)(y - y_U)\} \), where \(y, y_N, \) and \(y_U \) were the observed, native, and unfolded CD signal at a given GdmCl concentration, respectively (Santoro & Bolen, 1988). Equilibrium denaturation curves versus [GdmCl] concentration are shown in Figure 5-3. Difference in [GdmCl]_{1/2} clearly indicates the increase of the stability for dh434(0–63) and P22/434(0–63). In Table 5-3 the thermodynamic parameters are summarized for the comparison among the variants. The \(m \) value for 434(1–63) is different from the val-

Table 5-2: Values of \(T_m \) for variants of 434(0–63) and P22c2(5–68).

<table>
<thead>
<tr>
<th>Proteins</th>
<th>(T_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dh434(0–63)*</td>
<td>85.1 ± 0.9 °C</td>
</tr>
<tr>
<td>434(1–63)</td>
<td>68.6 ± 0.3 °C</td>
</tr>
<tr>
<td>P22/434(0–63)*</td>
<td>81.2 ± 0.4 °C</td>
</tr>
<tr>
<td>P22c2(5–68)</td>
<td>61.8 ± 0.3 °C</td>
</tr>
</tbody>
</table>

*residue 0 indicates an additional methionine at the N-terminus.

\(T_m \) were measured by monitoring circular dichroism at 222 nm at pH 5.0.

5.2.
ues from other variants. It appears that this m value for 434(1–63) is unique feature of 434(1–63). Three times of the independent measurements were performed and always indicated the same value for 434(1–63) confirming that this is not originating the error in the experiments.

Table 5-3: Thermodynamic denaturation parameters of dh434(0–63), 434(1–63), P22/434(0–63), and P22c2(5–68) at pH 4.8 and 13 °C.

<table>
<thead>
<tr>
<th>Proteins</th>
<th>$\Delta G_{eq}(H_2O)^a$ (kcal/mol)</th>
<th>$[\text{GdmCl}]_{1/2}^b$ (mol/l)</th>
<th>m^c (kcal/l/mol)2</th>
<th>$<m>\times[\text{GdmCl}]_{1/2}^b$ (kcal/mol)</th>
<th>$\Delta G_{eq}(H_2O)$ (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>434(1–63)</td>
<td>3.8 ± 0.2</td>
<td>2.2</td>
<td>1.7 ± 0.1</td>
<td>4.4</td>
<td>--</td>
</tr>
<tr>
<td>P22c2(5–68)</td>
<td>3.3 ± 0.1</td>
<td>1.6</td>
<td>2.1 ± 0.1</td>
<td>3.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>P22/434(0–63)a</td>
<td>6.2 ± 0.2</td>
<td>3.1</td>
<td>2.0 ± 0.1</td>
<td>6.1</td>
<td>2.4</td>
</tr>
<tr>
<td>dh434(0–63)a</td>
<td>6.1 ± 0.2</td>
<td>2.9</td>
<td>2.1 ± 0.1</td>
<td>5.7</td>
<td>2.3</td>
</tr>
</tbody>
</table>

*residue 0 indicates an additional methionine at the N-terminus.

a, c Obtained from the equation, $\Delta G = \Delta G(H_2O) - m\times[GdmCl]$.

b Midpoint of the GdmHCl unfolding curve.

Figure 5-3: Equilibrium fraction of unfolded molecules versus [GdmCl] concentration for (V):434(1–63), (+):P22/434(0–63), (●):P22c2(5–68), and (○): dh434(0–63) in 50 mM Na-Acetate at pH 4.8, 13 °C.
5.3. Discussion

Mutations at the salt bridge of 434(1–63)

A salt bridge between Arg10 and Glu35 is found in the interior of the three-dimensional structure of the DNA binding domain of 434 repressor (Mondragon et al., 1989; Neri et al., 1992a; Pervushin et al., 1996). The importance of the salt-bridge for the stability of the proteins is still a matter of debate (Mrabet et al., 1992; Yang & Honig, 1993; Borders et al., 1994; Marqusee & Sauer, 1994; Waldburger et al., 1994; Hendusch & Tidor, 1994; Tissot et al., 1996). For better understanding of the role of the salt bridge in the interior of 434(1–63), variants of 434(1–63) with the mutations at the salt bridge, i.e. [R10M]-434(1–63) and [E35Q]-434(1–63) were constructed (Siegal et al. to be published; Pervushin et al., 1996). The three-dimensional structure of [R10M]-434(1–63) has been determined by NMR and shows the same global fold with five helices as found in the structure of 434(1–63) with a minor shift of the helices (Pervushin et al., 1996). A destabilization of 2.1 kcal/mol was observed for [R10M]-434(1–63) as compared with 434(1–63) from the thermal denaturation experiments (Figure 5-2 and Table 5-1). In a previous study the attempt to produce [E35Q]-434(1–63) had failed because of very low expression yields of the protein in E.coli presumably due to the low stability of [E35Q]-434(1–63) in vivo (Siegal et al. to be published; Figure 4-19). In this study, the unstable mutant [E35Q]-434(1–63) was successfully expressed in E.coli and purified by using the novel fusion expression vector as described in Chapter 4. In contrast to [R10M]-434(1–63), [E35Q]-434(1–63) shows a largely disordered structure at low ionic strength (Figure 4-20 and Figure 5-1B). This observation explains why [E35Q]-434(1–63) was not stably expressed in the cytoplasm of E.coli as the unfolded protein is most likely prone to degradation. It was found in the three-dimensional structure of the variant [R10M]-434(1–63) that Lys7 could also interact with Glu35, accompanied by a minor conformational changes compensating the unpaired negative charge of Glu35 (Pervushin et al., 1996). It appears that in the variant [E35Q]-434(1–63) an analogous compensation by another acidic residues cannot be achieved. The apparent pK\(a\) value of 2.0 for the carboxylate of the side chain of Glu35 was obtained from the pH titration of the chemical shift of \(^{13}\)C\(^{\delta}\) (Chapter 7). This apparent pK\(a\) shift of the side chain carboxylates of Glu35 can be translated to the contribution of this ionizable group to
the stability of the protein in pH-dependent manner as shown by the following equation,

\[
\Delta \Delta G(pH) = -RT \ln \left(\frac{1 + 10^{pH - pK_a(f)}}{1 + 10^{pH - pK_a(u)}} \right)
\]

in which \(\Delta \Delta G\) is the contribution of the ionizing group to the stability of the protein, and \(pK_a(f)\) and \(pK_a(u)\) are the pKa values of the acidic residue in the native and unfolded protein, respectively (Anderson et al., 1990; Langsetmo et al., 1991a,b). Accordingly the contribution of the side chain of Glu35 can be estimated to be about 2.7 kcal/mol at 13°C and pH 4.8 assuming the pKa of 4.2 for Glu35 in the unfolded state. This value is more than half of free energy of folding of \(\Delta G\) obtained by thermal and chemical denaturation of 434(1–63) (Table 5-1 and 5-3). Moreover, the titration of the side chain carbonyl group of Gln17 and Gln28 observed in \(^{13}\)C chemical shift suggested the existence of a cooperative large network of hydrogen bonds between Arg10, Glu35, Gln17, and Gln28. The unsatisfied buried positive charge of Arg10 caused by replacement from Glu35 to Gln leads to the observed unfolded structure of [E35Q]-434(1–63).

It has been proven that an entire salt-bridge network can be replaced by hydrophobic residues resulting in active mutants that are significantly more stable than wild type and that simple hydrophobic interactions provide more stabilizing energy than the buried salt bridge and confer comparable conformational specificity (Waldburger et al., 1995). Why does the buried salt bridge exist in proteins? There are several explanations proposed such as playing a role during protein folding (Waldburger et al., 1996; Tissot et al., 1996) and for the specificity (Perutz, 1989; Schirmer & Evans, 1990). Conserved salt bridges were shown to be less exposed than non-conserved ones (Schueler & Margalit, 1995). The salt-bridge found in 434(1–63) seems to be often found in homologous DNA-binding proteins with helix-turn-helix motif (Pervushin et al., 1996; Appendix H). Why is the buried salt bridges conserved? Surprisingly the produced satl-bridge variant [E35Q]-434(1–63) in this study is found to be soluble up to milimolar concentration even though its three-dimensional structure is disordered, which might provide some speculations such as playing a role in a denatured state at low pH.
Comparison of the stabilities of 434(1–63), dh434(0–63), and P22c2(5–68)

A similar m value is observed for 3 homologous proteins except for 434(1–63). It is found that m values correlate with the size of the proteins (Schellman, 1978; Myers et al. 1995). This correlation is assumed to result from the changes in the accessible surface area (ΔASA) upon unfolding. Inspection of the three-dimensional structures of the proteins might explain the origin of the difference in m values. ΔASA was calculated to 4719 Å² for dh434(0–63) from the three-dimensional structure and the extended polypeptide model. This value provides expected m value of 2.0 kcal•l/mol². This is in good agreement with the experimental values of 2.1 kcal•l/mol². The structure of P22c2(5–68) can be modeled based on the structure of P22c2(1–76) by removing the residues at the N- and C- terminus and used for the calculation of ΔASA of P22c2(5–68) resulting in ΔASA 5002 Å². This corresponds to m value of 2.1 kcal•l/mol² according to the reported correlation (Myers et al., 1995). This is also in good agreement with the experimental m value of P22c2(5–68). On the contrary ΔASA of 434(1–63) is obtained to 4603 Å² that leads to the expected m value of 2.0 kcal•l/mol². However, the experimental m value of 1.7 kcal•l/mol² for 434(1–63) suggests a ΔASA of about 3200 Å². This discrepancy could be because the extended peptide model as an unfolded structure is not an appropriate model in the case of 434(1–63), or because the unfolding of the protein does not fit with two-states model any more. The observation of the residual structure of 434(1–69) in 7 M urea solution might provide a support for such explanation (Neri et al., 1992b). 434(1–63) in the denatured state might contain some residual structure as found in 434(1–69) in 7 M urea solution so that experimental m values might be smaller due to this residual structure.

The three-dimensional structure of dh434(0–63) reveals several small but notable differences between dh434(0–63) and 434(1–63) (see Chapter 6). An increase of hydrophobic contacts is observed in the core of dh434(0–63) (Figure 6-11). In addition the presence of a new hydrogen bond by the side chain of Arg9 connecting two sub-domains in dh434(0–63) was identified as compared with wild-type 434(1–63) (Figure 6-9 and Figure 6-10). The range of 0.5–2 kcal/mol is generally the net stabilization energy by a hydrogen bond (Fersht, 1987). Therefore the stabilization of
dh434(0–63) can be principally explained based on the formation of a new hydrogen bond. It is found that the large networks of ion-pairs exist in the three-dimensional structure of hyperthermophilic proteins as compared to the structure of mesophilic counterparts suggesting the importance for hyperthermostability (Goldman, 1995). Such observation in other hyperthermophilic proteins can also support the origin of the increased stability of dh434(0–63).

A higher stability was observed for the newly constructed proteins P22/434(0–63) and dh434(0–63) compared to the wild-type protein. Interestingly three naturally occurring, structurally homologous proteins, i.e. 434(1–63), P22c2(5–68), and 434Cro(1–76) are found to have a similar $\Delta G(H_2O)$ of 3.3–3.8 kcal/mol (Table 5-3; Padmanabhan et al., 1996). This implies that the proteins of the 434 family are not optimized in terms of stability. Swapping of the sequences in the secondary structure among the homologous proteins in this case the first helices between P22c2(1–76) and 434(1–63) significantly improved the stability of 434(1–63). In general although a large number of data has been accumulated for understanding of protein stability (Fersht & Serrano, 1993), it is not an easy task to rationally design or modify a protein to become stable enough for application in biotechnology. The data shown here for dh434(0–63) and the hybrid protein P22/434(0–63) suggests that construction of a chimeric protein from homologous proteins may be applied in the future to generate more stable proteins.
High resolution structures of the proteins are indispensable for the detailed analysis of the protein hydration by NMR spectroscopy because it is necessary to inspect the three-dimensional structure carefully to separate NOEs from long-lived water molecules and NOEs via chemical exchange with water. Moreover, the assignments of 13C/15N atoms will be of great advantage for the separation of the signal overlaps in 1H frequency by utilizing the dispersions in 13C and 15N frequencies. The resonance assignments, structure determination, characterization of dh434(0–63) by NMR spectroscopy are described in this chapter. The determined structures of dh434(0–63) are compared with wild-type 434(1–63).

6.1. 1H resonance assignments of dh434(0–63) and secondary structure determination

Sample preparation & NMR spectroscopy

dh434(0–63) was expressed in *E. coli* and purified as described in Chapter 4. For the homonuclear experiments a NMR sample contains 5 mM dh434(0–63) in 25 mM K-phosphate buffer with a mixed solvent of 90% H$_2$O/10% D$_2$O was used. The protein samples were adjusted to pH 4.8 by the addition of minute amounts of NaOH and HCl.

The spectra were recorded on a Varian Unity-pulse 750 spectrometer and the temperature of all experiments used for the structure determination was 13.0 °C. For the assignments of 1H resonances homonuclear 2QF-COSY (Rance et al., 1983), clean-TOCSY with mixing time 70 msec (Griesinger et al., 1988) and NOESY with mixing time 40 msec (Anli-Kumer et al., 1980) spectra were recorded in H$_2$O in the pure absorption mode using the States-TPPI method (Marion et al., 1988). For the collection of upper-bond 1H-1H distance constraints, a [1H,1H]-NOESY spectra with
zero-quantum coherence suppression by systematic incrementations of mixing time in every each scans (from 35 msec to 45 msec with an incrementation of 0.454 msec) (Macura et al., 1982). A data set in H2O solution was recorded with 1024 × 2048 complex points, with t1max = 56 msec and t2max = 223 msec. Vicinal spin–spin coupling constants 3JHNα were determined from the aforementioned NOESY spectrum or [15N, 1H]-HSQC spectrum in H2O by inverse Fourier transformation of in-phase multiplets (Szyperski et al., 1992). Vicinal spin–spin coupling constants 3Jαβ were obtained from an E.COSY spectrum (Griesinger et al., 1985) recorded at 750 MHz proton frequency with a digital resolution of 1.6 Hz/point along ω2. 3JNNβ was derived from constant time 3D-HNHB experiments (Archer et al., 1991; Chary et al., 1991), recorded on Bruker AMX600 spectrometer by using a 15N labeled sample. This information of coupling constants was used for the inputs of program HABAS (Güntert et al., 1991a).

Sequential assignments

Sequence specific 1H n.m.r. assignments for the dh434(0–63), were obtained following the standard strategy (Wüthrich, 1986) for small proteins, using clean-TOCSY, NOESY, and 2QF-COSY. NOE upper bounds on 1H–1H distances were obtained from a NOESY experiment with τm = 40 msec with selective suppression of zero-quantum coherence. The spin systems were categorized by using clean-TOCSY and 2QF-COSY. Non-degenerated alpha protons of glycine residues were easily identified in 2QF-COSY spectra. The nine alanines of dh434(0–63) were also found without ambiguity by the combination of clean-TOCSY and 2QF-COSY. Because dh434(0–63) does not contain any serines and cysteins, several AMX spin systems were readily assigned to one of asparatic acids, asparagine, or two aromatic residues. These spin systems assigned to the each amino acid types were connected by using NOESY spectra. A large part of the sequential connections was completed mainly on the basis of strong dNN connections starting from the unique amino acid types such glycines and alanines. These connections are coincided with dαN(i,i+3), dαN(i,i+4) connections ensuring their initial assignments. All dNN connection in 1H homonuclear spectra were identified in the helices except for Glu47 due to overlapping, which was solved in 15N separated NOESY spectra. The sequential assign-
ments involving proline residues were completed by identifying the NOEs between δ-protons of prolines and amide protons from the preceding residues. The NOE connectivities involving sequential and medium range NOEs are summarized in Figure 6-1. The sequential assignments were also confirmed by 15N edited NOESY and TOCSY spectra with 15N labelled sample.

Secondary structure

Figure 6-1 provides the survey of the information obtained from NOE spectrum and 3J HNa couplings. The successive connection of dNN connectivities and the small 3J HNa couplings suggest five helical conformations in dh434(0–63). dh434(0–63)
contains the nearly complete sets of $d_{\alpha\beta}(i,i+3)$ $d_{\alpha\beta}(i,i+3)$ indicating the presence of regular helical conformations (Wüthrich, 1984).

6.2. Solution structures of dh434(0–63)

Collection of distance and angle constraints and structure calculation

The cross peaks in the zero-quantum suppressed proton homonuclear NOESY spectrum of dh434(0–63) recorded with a mixing time of 40 msec in aqueous solution were assigned and integrated using the program XESAY (Bartels et al., 1995). The peak intensities were transformed into the distance constraints using CALIBA (Güntert et al., 1991). In order to obtain the maximum number of distance constraints, several rounds of structure calculations were performed with the program DYANA (Güntert et al., 1991; Güntert et al., 1997) and ASNO (Güntert et al., 1993). In total 1236 peaks were assigned and integrated in the NOESY spectra. The total of 1026 NOE distance constraints composed of 560 long range NOEs, 94 medium range NOEs, 78 sequential and 294 intra-residues NOEs, resulted after elimination of the irrelevant constrains (Figure 6-2). The distribution of distance constraints from NOEs is quite uniform but relatively few NOEs detected for the loop between helix III and IV and the terminus. The intra-residual and sequential NOE distance constraints combined with the $3J_{HN\alpha}$, $3J_{\alpha\beta}$ and $3J_{N\beta}$ coupling constrains yielded a total 135 dihedral angle constraints when analyzed with the program HABAS (Güntert et al., 1991). Individual assignments were obtained for 37 pairs of diasteretopic substitutes, using program HABAS (Güntert et al., 1991) and GLOMSA (Güntert et al., 1991). Structure calculation was performed with program DYANA starting from 50 random structures by using a standard annealing protocol with torsion angle dynamics step = 8000 (Güntert et al., 1997). Energy minimization using the AMBER all-atom force field (Weiner et al., 1986) in water bath was applied to the final 20 DYANA conformers with the program OPAL (Luginbühl et al., 1996), which includes pseudoenergy terms for distance constraints and dihedral angle constraints (Widmer et al., 1989; Billeter et al., 1990a). An overview of the best 20 structures from DYANA and after minimization of the DYANA conformers by program OPAL are listed in Table 6-1. The mean energy of these 20 conformers could be reduced by about 900 kcal/mol through energy-minimization.
with the program OPAL (Luginbühl et al., 1996).

Figure 6-2: (A) Plot of the number of NOE distance constraints, n, versus their range along the amino acid sequence. (B) Plot of the number of NOE distance constraints per residue, n, versus the amino acid sequence of dh434(0–63). The constraints are specified as follows: filled, intra-residual; crosshatched, constraints between protons in sequentially neighbouring residues; vertically hatched, constraints between protons located in residues separated by 2 to 5 positions along the sequence; open, all longer-range constraints. At the top, the locations of the helices in dh434(0–63) obtained from the 20 NMR conformers are indicated. (C) Plots of the global displacement and local r.m.s.d. for the backbone-heavy atoms, Cα, N and C'.
A ramachandran plot of the backbone dihedral angle ψ and ϕ of all the residues in the 20 energy minimized DYANA conformers of dh434(0–63) shows that almost all residues except for glycine residues indicated by crosses are in the energetically allowed regions of the ψ - ϕ plane (the region shadowed in Figure 6-3). A few residues apparently outside of this region are in the loop and the terminus, which are not well-defined and have less distance constraints as compared with the other segments of the structure of dh434(0–63) (Figure 6-2).
NMR structures of dh434(0-63)

In Figure 6-5A the backbone conformations of the final 20 energy-refined structures of dh434(0-63) are displayed after the superposition for all backbone heavy atoms which affords a visual impression of the structures and of the high quality of the structure determination. Five helices with residues 2 to 13 (helix I), 17 to 24 (helix II), 28 to 36 (helix III), 45 to 52 (helix IV), and 56 to 61 (helix V) are readily identified. A slightly disordered loop connecting helix III and helix IV can be identified as well. This global architecture of dh434(0-63) is essentially identical to the molecular architectures found in the structures of 434(1-69) and 434(1-63), solved by both X-ray and NMR despite of the 15 substitutions of the side chains (Aggarwal et al., 1988; Mondragon et al., 1989; Neri et al., 1992a; Pervushin et al., 1996; see Figure 6-14). The r.m.s.d. values calculated for the backbone atoms and all heavy atoms of dh434(0-63) are 0.39 Å and 0.83 Å, respectively indicating the high-quality NMR structures (Table 6-2). Plots of the local backbone r.m.s.d. values and the global backbone displacement versus the sequence further indicates all the well-defined helices and the increase of local disorder particularly for the terminus and the loop connecting the helices III and IV (Figure 6-2C). This is also observable in the plot of
Table 6-2. RMSD values calculated for different atom selections in the solution structures of dh434(0–63).

<table>
<thead>
<tr>
<th>Atoms used for comparison*</th>
<th>RMSD (Å) ± standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone atoms N, Cα and C’ (1–63)</td>
<td>0.39 ± 0.06</td>
</tr>
<tr>
<td>All heavy atoms (1–63)</td>
<td>0.83 ± 0.06</td>
</tr>
<tr>
<td>Backbone atoms (17–35)#</td>
<td>0.26 ± 0.04</td>
</tr>
</tbody>
</table>

* bb stands for the backbone heavy atoms N, Cα and C’. The numbers in parentheses indicate the residues for which the RMSD was calculated.

** Averages are given of the pairwise RMSD values between each of the 20 energy-refined DYANA conformers and the mean solution structure. RMSD values were calculated with the program MOLMOL (Koradi et al., 1995). # the helix-turn-helix motif.

The dihedral angle χ^1, ψ, and ϕ. (Figure 6-5). The relaxation data of dh434(0–63) described in Figure 6-16 supports that these disorder in r.m.s.d. could be relevant to the conformational features rather than lack of the constraints in this region. A plot of the dihedral angle χ^1, ψ, and ϕ observed in the 20 energy-minimized DYANA conformers of dh434(0–63) (Figure 6-5) indicates that the helices are defined in a regular helical conformation and several side chain conformations are also well defined.
Figure 6-5B affords the side chain conformations of dh434(0–63). Despite of 15 substitutions in the amino acid sequence all the substituted side chains are nicely accommodated to form the global fold of dh434(0–63), which is almost identical to that of 434(1–63) although slight rearrangements of side chain conformations have occurred as described below. The residues in the helix-turn-helix motif that make contacts with DNA bases in the major groove and the backbone of DNA such as Gln17, Gln28, Gln29, Gln33 remain unchanged in dh434(0–63). The structure of the helix-turn-helix motif is well defined and essentially identical to that of 434(1–63)(Table 6-2). Hence, from the viewpoint of the three dimensional structure one can expect that dh434(0–63) might bind the operator sites with a necessary oligomerization domains for the DNA binding.
6.3. Comparison between dh434(0–63), 434(1–63), and P22c2(1–76)

The most interesting points to be closely analyzed are the structural changes upon these substitutions and the structural differences had occurred when a chimeric sequence was produced and how much plasticity proteins have in order to accommodate side chains coming from another homologous proteins. The superposition of the backbone atoms of the mean structures of P22c2(1–76), 434(1–63), and dh434(0–63) is shown in Figure 6-6 providing an impression of their similarities in the backbone conformations. Notable differences in the loop between the helix III and IV can be readily recognized between P22c2(1–76) and 434(1–63). This is apparently due to the insertion of one residue in P22c2(1–76), which also appears...
as an increase of the r.m.s.d. for P22c2(1–76) (Table 6-3). Otherwise the r.m.s.d. among them are very small (Table 6-3). In particular the r.m.s.d. values with respect to 434(1–63) are comparable to the r.m.s.d. values of 0.61 Å among the 20 NMR conformers of 434(1–63) (Pervushin et al., 1996), indicating that there is no difference between 434(1–63) and dh434(0–63) in the backbone conformation beyond the precision of the NMR structures.
6.3

Figure 6-7 shows the side chain heavy atoms of the replace amino acids and indicates the spatial locations of the amino acid substitutions in the three dimensional structures of dh434(0–63). The side chain conformations of buried residues or residues having contacts with the other parts of the proteins among the substituted side chains are of special interest to be investigated in order to detect the effects by the replacements of the side chains on the three dimensional structures as compared with 434(1–63). In Figure 6-8 the local structures of the substituted residues are

Table 6-3: RMSD values for the superposition of three structures of 434(1–63), P22c2(1–76), and dh434(0–63).

<table>
<thead>
<tr>
<th>Structures</th>
<th>range</th>
<th>dh434(0–63) RMSD (Å)**</th>
</tr>
</thead>
<tbody>
<tr>
<td><434(1–63)></td>
<td>1–63</td>
<td>0.62</td>
</tr>
<tr>
<td><434(1–63)></td>
<td>17–35#</td>
<td>0.37</td>
</tr>
<tr>
<td><P22c2(1–76)></td>
<td>5–46,48–68</td>
<td>1.30</td>
</tr>
<tr>
<td><P22c2(1–76)></td>
<td>21–39#</td>
<td>0.50</td>
</tr>
</tbody>
</table>

**RMSDs were calculated for the backbone heavy atoms N, Cα and C' between the mean structures. 434(1–63) is the structures solved by NMR(1r63) (Pervushin et al., 1996).
P22c2(1–76) is the structures determined by NMR (1adr) (Sevilla-Sierra et al., 1994)
the helix-turn-helix motif.

Figure 6-7: Stereoview of the superposition of the backbone atoms of the 20 energy minimized DYANA conformers of dh434(0–63) with the side chain heavy atoms of the replaced residues. The labels indicate the amino acid types and residue numbers.
closely compared with the crystal structure of 434(1–69). The first 9 residues segment of dh434(0–63) contains the sequence of the corresponding part in the structure of P22c2(1–76) because dh434(0–63) was derived from the chimeric protein P22/434(0–63) (see Chapter 4). The backbone atoms of the residues 1–9 are superimposed in Figure 6-8A. In this segment several changes of the side chains conformation as compared with the structure of 434(1–69) can be observable. The side chains of Met2, Arg5, and Arg9 are slightly shifted as compared with the side chain conformation of 434(1–69). In particular the side chain of Arg9 is shifted and involved in the hydrogen bond with the backbone oxygen atom of Leu52, or Gly53 connecting the two sub-domains of dh434(0–63), i.e. helix I–III and the helix IV–V (Figure 6-8; Figure 6-10). Probably because of this shift of Arg9 the side chain of Arg5 is also moved and involved in the hydrogen bonds connecting the same two sub-domains (Figure 6-10). Among the other replaced residues the remarkable change is the side chain conformation of Val26. The hydroxyl group of Thr26 in the crystal structure of 434(1–69) forms a hydrogen bond with HN of Thr27. In dh434(0–63) Thr26 was replaced with a valine and the side chain of Val26 was rotated by about 120° with respect to the \(\chi^1 \) angle of Thr26 in 434(1–69) to accommodate the side chain of Val26 (Figure 6-8B). This conformational change leads to enhance van der Waals interactions with the other hydrophobic residues (Figure 6-11; Table 6-5). This replacement concludes that the side chain of Thr26 can be replaced with Val without causing any problems although this side chain in 434(1–63) is forming a hydrogen bond with the amide group of Thr27. In fact P22c2(1–76) contains Val at the corresponding position (Figure 4-5; Appendix H). This position is located in the helix-turn-helix motif which recognizes operator sites of the DNA. Therefore it might have an important role for the fine turning of the conformation of the helix-turn-helix motif although it is not tested whether dh434(0–63) is still able to bind to operator sites.
Hydrogen bond

Hydrogen bond is one of the most important interactions to keep the native three dimensional structure of proteins and for protein stability. In Table 6-4 the hydrogen bonds found in dh434(0–63) are summarized and compared with that of 434(1–63) and the crystal structure of 434(1–69). Among the substituted side chains in dh434(0–63) the side chains of Arg9 and Asp27 are found to be involved in new hydrogen bonds in the 20 NMR conformers of dh434(0–63). The side chain of Asp27 forms a hydrogen bond with its amide group in 11 structures out of the 20 NMR structures of dh434(0–63). In the three-dimensional structures of 434(1–63) and
434(1–69), the side chains of Ser4, Thr27, and Ser55 are forming N-caps (Mondragon et al., 1989; Neri et al., 1992a; Pervushin et al. 1996). Ser4, Thr27, and Ser55 are replaced in dh434(0–63) with Glu, Asp, and Ala, respectively. Since Glu and Asp are preferable amino acid types for N-capping (Richardson & Richardson, 1988), it was intended to keep the N-cap between Ser30 and Thr27 by the substitution to Asp in dh434(0–63). In the three-dimensional structure of dh434(0–63) only one structure out of 20 NMR structure of dh434(0–63) is found to contain this N-cap but the pH titration of dh434(0–63) indicates that the amide group of Ala30 and Asp27 were titrated with the same pKa supporting the presence of this N-cap. In dh434(0–63) Ser55 was replaced with Ala in dh434(0–63). The removal of the hydroxyl group of Ser55 should cause the loss of the hydrogen bond with the backbone amide of Trp58 (Figure 6-13). This effect could not be detectable in the 20 NMR structures of dh434(0–63) because of the short side chain but vividly observable in the chemical shift change of HN of Trp58 which shifted to the up-field by 1.2 ppm (Figure 6-12). Moreover this effect could be detectable in H/D exchange rates as well. As shown in Figure 6-15 the most of the buried residues in the helices decreased the proton exchange rates of the amide groups. In contrast in the helix V the exchange rates did not decrease but slightly increased. This is possibly due to the loss of the N-cap in helix V. The three dimensional structure of dh434(0–63) can be divided into two sub-domains in which one sub-domain consists of the helices I–II and the other consists of the helices VI–V connected by a flexible linker (Figure 6-10). The side chain of Arg9 is found to be involved in several hydrogen bonds connecting the two sub-domains of dh434(0–63) (Table 6-4; Figure 6-10). The HE(NE)HGHH experiment can provide the correlations between Hε and Hγ and the correlations between Hε and Hn through the heteronuclear three bonds 3JNH couplings (Figure 6-9B). It can also correlate between Hε atom and the Hδ due to the two bonds heteronuclear 2JNH couplings which are usually smaller than 3JNH for flexible arginine side chains.
presumably because of longer relaxation times. Figure 6-9A presents the spectrum of the HE(NE)HGHH experiment measured with dh434(0–63) indicating the different pattern of H^\text{h} protons for Arg5, Arg9, and Arg10 from the other Arg. In the structure of dh434(0–63) Arg10 is involved in a buried salt-bridge with Glu35 which results in the down-field shift of H^e protons to 11.8 ppm and clearly shows correlations between two H^\text{h} and H^e (Appendix F). For Arg5 and Arg9 the small up-field shifts of H^e protons and a separate H^\text{h} peak were observed. This is very different from the other Arg on the surface such as Arg7, Arg41, Arg43, and Arg51 which show broad two peaks for H^\text{h} (Figure 6-9). In the 20 NMR structures of dh434(0–63) the hydrogen bonds between the H^\text{h} and H^e of Arg5 and Leu59, and between the H^\text{h}
and H^e of Arg9 and Leu52 or Gly53 were found (Table 6-4 and Figure 6-10). Difference in the spectrum of the HE(NE)HGHH experiment suggests that the dynamics of these side chains has dramatically changed due to these hydrogen bonds (Pellecchia et al., 1996; Yamazaki et al., 1995). The disappearance of the two broad peaks of H^n for Arg5, Arg9 and Arg10 suggests that the rotations around C-N bonds have been reduced. This is in good agreement with the observation of hydrogen bonds for Arg5, Arg9, and Arg10 in the three-dimensional structure of dh434(0–63). This additional hydrogen bond from Arg9 could be a factor for hyper-stability of dh434(0–63) (Mrabet et al., 1992; Borders et al., 1994; Chapter 5).
Table 6-4. Hydrogen bonds identified in the 20 energy-minimized DYANA conformers of dh434(0–63) and in the structures of 434(1–63) and the structure of 434(1–69) solved by x-ray.

<table>
<thead>
<tr>
<th>Donor Acceptor</th>
<th>dh434(0–63)</th>
<th>434(1–63)</th>
<th>434(1–69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg5 HN</td>
<td>Leu1 O'</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Arg5 Hε</td>
<td>Leu59 O'</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Arg5 Hη</td>
<td>Leu59 O'</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Ile6 HN</td>
<td>Met2 O'</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Arg7 HN</td>
<td>Gly3 O'</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Ala8 HN</td>
<td>Glu4 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Arg9 HN</td>
<td>Arg5 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Arg9 Hε</td>
<td>Leu52 O'</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Arg9 Hη</td>
<td>Leu52 O'</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Arg10 Hη</td>
<td>Gly35 εO1</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Arg10 Hη</td>
<td>Gly35 εO2</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Arg10 Hη</td>
<td>Leu15 O'</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Ile11 HN</td>
<td>Arg7 O'</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Gin12 HN</td>
<td>Ala8 O'</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Leu13 HN</td>
<td>Arg9 O'</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Leu13 HN</td>
<td>Arg10 O'</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Gly14 HN</td>
<td>Ile11 O'</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Leu15 HN</td>
<td>Arg10 O'</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Gin17 Hε2</td>
<td>Glu35 O€</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Gin17 Hε2</td>
<td>Glu32 O€</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Leu20 HN</td>
<td>Asn16 O'</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Ala21 HN</td>
<td>Gin17 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Gin22 HN</td>
<td>Ala18 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Lys23 HN</td>
<td>Glu19 O'</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Val24 HN</td>
<td>Leu20 O'</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Gly25 HN</td>
<td>Ala21 O'</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Val26 HN</td>
<td>Ala21 O'</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Asp27 HN</td>
<td>Asp27 O€</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Ile31 HN</td>
<td>Gin28 O'</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Glu32 HN</td>
<td>Gin28 O'</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Gin33 HN</td>
<td>Gin29 O'</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Leu34 HN</td>
<td>Ala30 O'</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Glu35 HN</td>
<td>Ile31 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Asn36 HN</td>
<td>Glu32 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Gly37 HN</td>
<td>Leu34 O'</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Lys38 HN</td>
<td>Glu33 O'</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Leu45 HN</td>
<td>Pro42 O'</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Glu47 HN</td>
<td>Phe44 O'</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Leu48 HN</td>
<td>Phe44 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Ala49 HN</td>
<td>Leu45 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Arg50 HN</td>
<td>Pro46 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Ala51 HN</td>
<td>Glu47 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Leu52 HN</td>
<td>Leu48 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Gly53 HN</td>
<td>Ala49 O'</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Val54 HN</td>
<td>Ala49 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Leu59 HN</td>
<td>Ala55 O'</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Leu60 HN</td>
<td>Ala56 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Asn61 HN</td>
<td>Asp57 O'</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Asn61 Hδ2</td>
<td>Asp57 Oδ</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Hydrogen bonds are listed if the donor proton involved forms a hydrogen bond in at least 10 of the 20 energy-minimized DYANA conformers, or if a hydrogen bond was identified in the crystal structure (Mondragon et al., 1989). The number of DYANA conformer after energy minimization by OPAL is listed in which the hydrogen bond was identified. The criteria used for the identification are that the proton-acceptor distance must be less than 2.4Å and the angle between the donor-proton bond and the line connecting the acceptor and donor atoms is less than 35°. This criterion is sufficiently loose to detect bifurcated hydrogen bonds.
van der Waals interaction

Hydrophobic residues such as valines and alanines are newly introduced into 434(1–63). In particular alanine was used as a first choice for the substitution of serine residues. Therefore the introduction of hydrophobic residues may lead to the changes in the van der Waals contacts between the hydrophobic residues. In Table 6-5 the observed van der Waals contacts involving the newly introduced or replaced hydrophobic residues are compared with those of 434(1–63). Apparently several new van der Waals contacts involving Val26 emerged as compared with 434(1–63). The side chain of Val26 interacts with the side chains of Val24, Ala21, Ala30 and Phe44 in dh434(0–63). The large up-field shift to 0.05 ppm of the methyl group of Val26 was observed (Appendix F). This up-field shift can be attributed to the ring current effect of Phe44 located in the vicinity of the methyl group of Val26 providing an evidence for the interaction between the aromatic ring of Phe44 and the methyl group of Val26. A contact between Ala30 and Phe44 has also newly emerged as compared with 434(1–63). The side chain of Leu34 has contacts with the newly introduced Ala39 and also located in the proximity of Phe44. These substitutions from Ser30 to Ala30 and from Thr39 to Ala39 resulted in the reduction of the solvent accessible area of each residues by 10% (Table 6-6). In total these contacts from the newly introduced hydrophobic residues enhance the hydrophobic core between two sub-domains in the structure of dh434(0–63) (Figure 6-11). These enhancements of the van der Waals contacts in the interior of dh434(0–63) could contribute to the hyper-stability of dh434(0–63) as compared with 434(1–63) (Chapter 5).
Figure 6-11: Stereoview of the backbone atoms of dh434(0–63) with the side chains involved in the newly introduced van der Waals contacts. The side chain heavy atoms from the substituted residues are indicated by thick lines. The others are shown by thin lines.

Table 6-5: Analysis of newly introduced van der Waals contacts for hydrophobic residues in dh434(0–63)

<table>
<thead>
<tr>
<th>Residues & Atoms</th>
<th>dh434(0–63)</th>
<th>434(1–63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile6 Cγ</td>
<td>L59 Cδ2</td>
<td>18</td>
</tr>
<tr>
<td>Cδ1</td>
<td>L34 Cδ2</td>
<td>20</td>
</tr>
<tr>
<td>Val26 Cγ</td>
<td>A21 Cβ</td>
<td>20</td>
</tr>
<tr>
<td>Cγ</td>
<td>V24 Cγ</td>
<td>11</td>
</tr>
<tr>
<td>Cβ</td>
<td>A30 Cβ</td>
<td>13</td>
</tr>
<tr>
<td>Cγ</td>
<td>F44 Cβ</td>
<td>10</td>
</tr>
<tr>
<td>Cγ</td>
<td>F44 Cγ</td>
<td>20</td>
</tr>
<tr>
<td>Cγ</td>
<td>F44 Cδ</td>
<td>18</td>
</tr>
<tr>
<td>Cγ</td>
<td>F44 Cε</td>
<td>13</td>
</tr>
<tr>
<td>Cγ</td>
<td>I31 Cδ1</td>
<td>20</td>
</tr>
<tr>
<td>Ala30 Cβ</td>
<td>F44 Cδ</td>
<td>17</td>
</tr>
<tr>
<td>Cβ</td>
<td>F44 Cε</td>
<td>13</td>
</tr>
<tr>
<td>Ala39 Cβ</td>
<td>L34 Cγ</td>
<td>16</td>
</tr>
<tr>
<td>Cβ</td>
<td>L34 Cδ2</td>
<td>15</td>
</tr>
<tr>
<td>Ala63 Cβ</td>
<td>W58 Cδ1</td>
<td>11</td>
</tr>
</tbody>
</table>

The new van der Waals contacts involved in the substituted residues are listed when more than 10 structures out of the 20 energy-minimized DYANA conformers have contacts with carbons distance < 4.0 Å. For 434(1–63), the coordinates from pdb-entry 1r63 was used.
6.3 Comparison of the chemical shifts between dh434(0–63) and 434(1–63)

Chemical shifts are usually very sensitive to changes in structures and dynamics of proteins. The chemical shifts of H^α and H^N from dh434(0–63) and 434(1–63) are compared in Figure 6-12. A large down-field shift of 1.46 ppm was observed for H^N of Gly3. This down-field shift could be from the effect by forming a hydrogen bond but there is no new hydrogen bond between the other side chains and H^N of Gly3 in the 20 NMR structure of dh434(0–63). Therefore it is unclear and intriguing what cause this down-field shift of H^N of Gly3. It could be due to a hydrogen bond to a water molecule with amide group of Gly3 since the amide group of Gly3 indicate positive ROE and negative NOE (Figure 3-7; Figure 3-8). H^N of Trp58 also shows a large up-field shift of 1.4 ppm even though there is no substitution of amino acids in the neighboring residues. However, the H^N of Trp58 is involved in a hydrogen bond with Ser55 in 434(1–63) (Figure 6-13). Therefore this up-field shift can be attributed

Table 6-6. Summary of solvent-accessible surface area at the substituted residues

<table>
<thead>
<tr>
<th>Residues</th>
<th>dh434(0–63)</th>
<th>434(1–63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu1</td>
<td>47.6</td>
<td>51.8 (Ser)</td>
</tr>
<tr>
<td>Met2</td>
<td>11.8</td>
<td>17.1 (Ile)</td>
</tr>
<tr>
<td>Gly3</td>
<td>4.3</td>
<td>15.8 (Ser)</td>
</tr>
<tr>
<td>Glu4</td>
<td>33.9</td>
<td>30.0 (Ser)</td>
</tr>
<tr>
<td>Ile6</td>
<td>1.6</td>
<td>0.7 (Val)</td>
</tr>
<tr>
<td>Arg7</td>
<td>34.9</td>
<td>32.9 (Lys)</td>
</tr>
<tr>
<td>Ala8</td>
<td>25.0</td>
<td>27.3 (Ser)</td>
</tr>
<tr>
<td>Arg9</td>
<td>16.6</td>
<td>15.3 (Lys)</td>
</tr>
<tr>
<td>Val26</td>
<td>11.9</td>
<td>15.1 (Thr)</td>
</tr>
<tr>
<td>Asp27</td>
<td>35.6</td>
<td>37.4 (Thr)</td>
</tr>
<tr>
<td>Ala30</td>
<td>3.1</td>
<td>12.1 (Ser)</td>
</tr>
<tr>
<td>Ala39</td>
<td>10.5</td>
<td>20.8 (Ser)</td>
</tr>
<tr>
<td>Arg50</td>
<td>57.1</td>
<td>40.9 (Ser)</td>
</tr>
<tr>
<td>Ala55</td>
<td>28.6</td>
<td>27.7 (Ser)</td>
</tr>
<tr>
<td>Ala63</td>
<td>58.1</td>
<td>59.5 (Thr)</td>
</tr>
</tbody>
</table>

The average solvent-accessible surface area was calculated by using MOLMOL (Richmond, 1984; Koradi et al., 1995).
to the removal of the hydroxyl group of Ser55 which is forming N-cap in the structure of 434(1–69). Interestingly, relatively large up-field shifts are also observed for the H^N protons of the helix V such as Leu59, Leu60, and Asn61 which are not located in a close distance from any replaced residues (Figure 6-7). This observation suggests that the removal of the N-capping residue affects the chemical shifts of the entire helix V. This can also be supported by the slightly faster H/D exchange rates in the helix V. The N-cap of helix V has influenced on the entire helix V in a cooperative manner. Compared with the chemical shift of H^N protons, H^α chemical shift changes are not significant, which is assumed to be because of no large changes in the secondary structures because H^α protons are usually sensitive to the backbone conformations (Wishart et al., 1991). This is in agreement with the three dimensional structure of dh434(0–63) calculated from the distance and angle constraints obtained from the other NMR parameters. Large differences of H^α chemical shifts are

![Figure 6-12: Comparison of the chemical shifts between dh434(0–63) and 434(1–63) at pH 4.8 and 13°C. (A) Backbone amide protons. (B) Alpha protons. At the bottom, the helical segments are indicated. The positions of the amino acid substitutions are indicated by asterisks.](image-url)
observed mainly for the substituted residues because of the effects of the amino acid types rather than conformational changes. However, comparably large changes are also observed for several residues in the turn and the loop (Figure 6-12).

6.4. \(^{15}N \) relaxation measurements of dh434(0–63)

Nuclear spin relaxation measurements of the backbone\(^{15}N \) atoms in aqueous solution with uniformly \(^{15}N \)-enriched proteins has become a popular approach for the characterization of global protein motions and internal backbone mobility (Peng & Wagner, 1994). It is desirable to obtain experimentally the rotational correlation time of dh434(0–63) for the estimation of the residence time of water molecules based on the diffusion model proposed by Ayant et al., 1978 and Otting et al., 1991a. In this section the correlation time of dh434(0–63) was experimentally determined by measuring the relaxation time of the backbone\(^{15}N \) atoms.

Sample preparation \& NMR measurements

Uniformly \(^{15}N \)-labeled dh434(0–63) was expressed and purified as described in Chapter 4. The NMR sample for the relaxation measurements contained 5 mM protein in 25 mM K-phosphate at pH 4.8 in a mixed solvent of 90% \(H_2O/10\% D_2O\).

All measurements were performed at 13\(^{\circ}\)C, using Varian Unity-plus 400 spectrometers operating at \(^{1}H \) frequencies of 400 MHz with a triple resonance probe head equipped with Z gradient coil. The pulse scheme used for measurements of

![Figure 6-13: Stereoview of a segment of residues 55– 63 from the crystal structure of 434(1–69). The dotted lines indicate hydrogen bonds observed in the crystal structure of 434(1–69) in this segment.](image-url)
T$_1^{(15\text{N})}$ has been adapted from Farrow et al. (1994) by replacing the H$_N$-selective 180° proton pulse in the carrier position for the suppression of the cross-polarization. For the relaxation times, T$_1$, a series of 11 spectra was measured with the following relaxation delays: t$_{\text{rel}}$ = 1, 6, 16, 36, 76, 146, 196, 296, 396, 496, and 596 msec. The T$_2$ measurements was performed using CMPG-type sequence with sensitivity enhancement scheme. A series of 10 spectra was recorded with the following the relaxation delays: t$_{\text{rel}}$ = 15.8, 31.6, 47.5, 63.3, 79.1, 110.8, 142.4, 189.9, 237.4, and 316.5 msec. $^{15}\text{N}_{(1\text{H})}$ steady-state heteronuclear Overhauser effects were determined as described by Farrow et al. (1994). The total measurements time for the two spectra was 48 hours at 1H frequency of 400 MHz. NOE values were determined as the ratio of corresponding cross-peaks volumes measured from the spectra acquired with and without 1H saturation during the recycle delay. All data sets were processed using the program PROSA (Güntert et al., 1992), and peak picking and volume integration were performed with the program XEASY (Bartels et al., 1995).
The T_1 and T_2 relaxation rates of individual 15N atoms were determined by nonlinear least squares fitting of the magnetization decay curves to a single exponential function (Figure 6-14). $<T_1/T_2> = 2.77 \pm 0.07$ was found at the 1H frequency of 400 MHz when disregarding the residues for which T_1/T_2 is outside of the standard deviation. This results in an apparent global correlation time $\tau_c = 6.2 \pm 0.2$ nsec for dh434(0–63). Figure 6-14 indicates the increases of T_1 and T_2 in the loop region.
and the C-terminus of dh434(0–63). This is a very similar feature to the relaxation data obtained from 434(1–63) in which the increase in T_1 and T_2 was attributed to the increased local mobility indicating that not only three dimensional structures but also dynamical feature of dh434(0–63) is very similar to that of wild-type 434(1–63) (Luginbühl et al., 1997).

6.5. H/D exchange rates of dh434(0–63) and 434(1–63)

Information about the structure and conformational dynamics of proteins is contained in hydrogen exchange behavior of amide groups. H/D exchange rates of amide groups have been used for the characterization of hydrogen bonds, protein folding process, protein stability, and protein-protein and protein-ligand interactions. In this section the characterization of dh434(0–63) by measuring H/D exchange rates of dh434(0–63) is described.

Sample preparation & NMR measurements

Each of 1 mM solution of the uniformly 15N-labeled dh434(0–63) and the uniformly 15N labeled 434(1–63) were used for the measurements of H/D exchange rates. The sample dissolved in H$_2$O at pH 4.8 in 25 mM K-phosphate buffer was lyophilized. H/D exchange rates of the slowly exchanging amide protons of dh434(0–63) were obtained from a series of 2D-15N, 1H-COSY (Bodenhausen & Ruben, 1980) spectra recorded immediately after the fully protonated 15N labelled lyophilized dh434(0–63) dissolved in D$_2$O. All measurements were performed at 13°C, using Varian Unity-plus 400 spectrometer. All data sets were processed using the program PROSA (Güntert et al., 1992), and peak picking and volume integration were performed with the program XEASY (Bartels et al., 1995). The exchange rates were determined by least square fitting the cross-peak intensities to an exponential decay function.

Experimental H/D exchange rates

Plots of the H/D exchange rates of dh434(0–63) and 434(1–63) were presented versus the amino acid sequence in the Figure 6-15 together with a plot of the solvent accessible surface of dh434(0–63). Overall, slow amide proton exchange rates are co-
incident with the positions of the helices. The slower amide proton exchange rates for dh434(0–63) as compared with 434(1–63) correlate well with the higher precision of the determined NMR structures of dh434(0–63). The significant differences in the exchange rates between dh434(0–63) and 434(1–63) can be readily recognized in the helix I. This could be attributed to the effects originating from the differences in the amino acid sequences due to the neighboring effects (Bai et al., 1993). Amide protons of the exposed residues in the helix II, III and IV show little difference in the H/D exchange rates between dh434(0–63) and 434(1–63) unless there is any side chain substitutions at the positions (Figure 6-15). In contrast the exchange rates of the residues with smaller solvent accessible surface areas are largely reduced by more than factor of one (Figure 6-12). This observation suggests that the opening rate of the protein was largely reduced. This is in good agreement with the data of the stability of dh434(0–63) (Chapter 5). Whereas the exchange rates in the helix V of dh434(0–63) are not slower than that of 434(1–63). Even slightly faster exchange rates could be observed for some residues in this helix although there is no amino acid substitution introduced in the helix V. This can be explained based on the fact that the N-cap formed by Ser55 in 434(1–63) was removed (Figure 6-13). The effect of the removal of N-cap was observed in the \(^1\)HN chemical shifts in the helix V as well(Figure 6-12). This observation may support the local destabilization of the helix V. Overall the H/D exchange rates of amide groups of dh434(0–63) indicates a more compact structure than that of 434(1–63). This strongly supports that dh434(0–63) does not have a “molten globule” structure that was often found in de novo designed proteins, or artificial proteins (Shang et al., 1994; Betz et al., 1993; Betz et al., 1995).
6. Structure determination and Characterization of dh434(0–63) by NMR

13C and 15N resonance assignments of dh434(0–63)

13C/15N doubly labeled samples are very useful to provide additional frequencies to resolve the overlapping in 1H frequency. It has become a powerful approach...
to resolve the overlapping using isotope-labelled samples to determine three dimensional structures by NMR. It has also been used for the identification of water molecules by separating the overlapping using ^{13}C and ^{15}N frequencies (Grzesiek & Bax, 1993a,b; Kriwacki, 1993). However, there is only homonuclear experiments which have been used for the identification of the short-lived water molecules. This is presumably because the observation of short-lived water molecules requires the sensitivity hence often used the high concentration (20 mM ~100 mM) of the protein or peptides solution (Otting et al., 1991a; Liepinish et al., 1992; Brüshweiler et al., 1995). This high concentration of proteins is very demanding requirement for an isotope-labelled sample from the viewpoint of the cost. The disadvantage with unlabeled samples in the hydration studies is that the separation of the signals is often achieved by the homonuclear 3D experiments such as NOESY-TOCSY experiment in which TOCSY scheme might produce undesired effects disturbing the interpretation of the spectra.

Sample preparation & NMR spectroscopy

$^{13}\text{C}/^{15}\text{N}$ doubly labeled sample of dh434(0–63) was prepared as described in Chapter 4. 1 mM and 5 mM protein solution of dh434(0–63) in 90%/10%=H$_2$O/D$_2$O in 25 mM K-phosphate buffer are used for the measurements. pH of the samples was adjusted to 4.8 with minute amounts of HCl and NaOH. 2D-, 3D- HCCH-COSY (Ikura et al., 1991), HC(CO)NH-TOCSY (Logan et al., 1991), HNCACB (Wittekind et al., 1993) experiments were performed for the resonance assignments of ^{13}C, ^{15}N of dh434(0–63). All experiments were performed at 13°C, using Varian Unity-plus 400, 750, or Bruker DMX 600 spectrometers.

Assignments of C$^\alpha$, C$^\beta$ atoms

3D HNCACB experiment can provide the information of the chemical shifts of C$^{\alpha}$/C$^{\beta}$ (Wittekind et al. 1993). In the HNCACB experiment, the magnetization transfer follows the following steps.

$$H_1 \rightarrow N_1 \rightarrow C_1^{\alpha} \rightarrow C_1^{\alpha}/C_1^{\beta} [F_1] \rightarrow C_1^{\alpha} \rightarrow N_1 [F_2] \rightarrow H_1 [F_3]$$

In addition to this magnetization pathway there is a simultaneous magnetization transfer mediated by the two-bond ^{2}J (N$_1$-C$^{\alpha}_{i-1}$) coupling as following.
These magnetization transfer pathways provide both intra-residual correlation of Cα/Cβ, N_i, H_i and the inter-residual correlation of Cα_{i-1}/Cβ_{i-1}, N_i, H_i. In Figure 6-16 the typical strips from the spectrum of HNCACB experiments with dh434(0–63) are indicated. For each strips the stronger positive/negative peaks correspond to the intra-residue correlation between Cα/Cβ and the amide 15N, 1H. The weaker pairs of the peaks correspond to the correlations between the Cα_{i-1}/Cβ_{i-1} of the preceding residue and the amide 15N, 1H which is due to the two-bond 2J (N_i-Cα_{i-1}) coupling. Because of the different magnetization transfer pathways in the HNCACB experiment the Cα and Cβ have the opposite sign of the peaks which can be used to distinguish between Cα and Cβ atoms. In this HNCACB experiment all the Cα and Cβ chemical shifts were identified except for the preceding residues of proline residues because of the lack of the 15N, 1H correlations. By this experiment, all the Cα and Cβ of Gly,
Ala, Asn, Asp, Trp, and Phe of dh434(0–63) were identified.

Assignments of 13C atoms of longer side chains

From the HNCACB experiment only the information of C^α/C$^\beta$ was obtained. It is necessary to use additional spectra for the assignment of 13C atoms of longer side chains. For this purpose, 3D-HC(CO)NH-TOCSY spectrum was recorded (Logan et al., 1993). In this experiment the magnetization the magnetization transfer follows the following steps.

$$H_{i-1} \rightarrow C_{i-1} [F_1] \rightarrow C^\alpha_{i-1} \rightarrow C^\gamma_{i-1} \rightarrow N_i [F_2] \rightarrow H_i [F_3]$$

This magnetization transfer provides the correlation of all 1H attached 13C atoms of the preceding residue C_{i-1}, and N_i, H_i from the backbone amide groups. Fig-

![Figure 6-17: Strips from the 3D HC(CO)NH-TOCSY spectrum (Logan et al., 1993) of 5mM 13C, 15N doubly labeled dh434(0–63) at pH 4.8, 13°C measured on UNITY+ 400 at the 1H frequency of 400 MHz. The strips are illustrating the residues 17–30 containing all the peaks originated from the preceding residues’ (labeled at the top) carbon atoms.](image-url)
Figure 6-17 presents the typical strips from the HC(CO)NH-TOCSY spectrum of dh434(0–63).

Each strip contains the information of all the chemical shifts of 13C atoms of the preceding residues except for the aromatic and carbonyl carbons. Combined with the data from the HNCACB experiment, all the C$_{\alpha}$, C$_{\beta}$, C$_{\gamma}$ atoms of Gln, Glu, Met, and Val were assigned unambiguously. For the other type of amino acids all the 13C chemical shifts of the side chains except for 2 residues from the preceding residues of proline residues were obtained but it was necessary to assign these chemical shifts to the individual carbon atoms. For this purpose additional spectra. 2D- and 3D-HCCH-COSY spectra were recorded on Unity plus 750 or 400. Based on the 1H assignment obtained from the analysis of 1H homonuclear experiments, the HCCH-COSY and [13C, 1H]-HSQC spectra were used for the assignments of the rest of 13C atoms. Since the methyl group of a methionine does not have any C-C bond connection, the assignments of εCH$_3$ in methionines could not be confirmed by the HCCH-COSY spectra. However the assignments of the 13C atoms of the methyl groups were derived from 13C edited ct-HSQC spectra based on the 1H assignment of methionines obtained from the 1H homonuclear experiments. dh434(0–63) contains the two aromatic groups, the assignments of the aromatic rings were completed in the same manner with HSQC and HCCH-COSY spectra. For the assignments of the preceding residues of the proline, HCCH-COSY and HCCH-TOCSY spectra were analyzed. The obtained assignments of 13C and 15N atoms are summarized in APPENDIX G, which were used for the analysis of the hydration spectra in Chapter 3. Figure 6-18 presents all the complete assignments of the backbone amide groups of dh434(0–63) except for the N-terminus in the [15N, 1H]-HSQC spectrum. These backbone assignments were used for 15N relaxation and H/D exchange rates measurements.
6. Structure determination and Characterization of dh434(0–63) by NMR

Chemical shifts index

Chemical shifts such as \(H^\alpha \), \(C^\alpha \), and \(C^\beta \) atoms are found to correlate with the secondary structures of proteins (Wishart et al., 1991; Spera & Bax, 1991). Such correlations have been used for the identification of the secondary structures (Wishart et al., 1994; Luginbühl et al., 1995). Figure 6-19 presents the chemical shift differences from the values in random coli peptides for \(H^\alpha \), \(C^\alpha \), and \(C^\beta \), and CSI (Chemical Shift Index proposed by Wishart et al., 1994). The down-field shifts of \(C^\alpha \) atoms, the up-field shifts of \(H^\alpha \) atoms are in good agreement with the positions of the helices in the NMR structures of dh434(0–63). The tendency of the up-field shifts of \(C^\beta \) atoms also weakly correlates the positions of the helices. These observation provide supports for the correct \(^1H \), \(^13C \), resonance assignments of dh434(0–63) and the calculated NMR structures.
6.7. Stereospecific assignments of methyl groups by fractionally 10% 13C labeling

Assignments of the diastereotopic methyl groups have large impact on the precision of the structures determined by NMR spectroscopy (Güntert et al., 1991a). Biosynthetically fractionally labeling procedure is the utmost reliable method for the assignment of diastereotopic methyl groups in valine and leucine because of the use of the biosynthetic pathway (Senn et al., 1989; Neri et al., 1989). In this section the methyl groups of valines and leucines are assigned by using 10% fractionally labeled samples.

Figure 6-19: Chemical shifts differences between the measured values of dh434(0–63) and the random coil values, (A) 13C$^\beta$, (B) 13C$^\alpha$, and (C) 1H$^\alpha$, versus the amino acid sequence. The positions of the helices are indicated. (D) Chemical shift index (CSI) (Wishart et al., 1994).
Sample preparation and NMR spectroscopy

10% fractionally 13C labeled sample was prepared from the M9 culture supplemented with 90%/10% = [D]-12C$_6$/13C$_6$- Glucose (Neri et al., 1989). Based on 1H and 13C resonance assignments obtained from the other experiments described above, the stereospecific assignments of the methyl groups of leucines and valines of dh434(0–63) were completed using ct-$[^{13}\text{C},^1\text{H}]$-HSQC and $[^{13}\text{C},^1\text{H}]$-HSQC spectra. Figure 6-20 presents ct-$[^{13}\text{C},^1\text{H}]$-HSQC spectrum of fractionally 10% labelled dh434(0–63) with constant time, 27 msec so that the prochiral pro-(S) methyl groups of leucine and valine were of opposite sign relative to the pro-(R) methyl group. Negative peaks are indicated by dotted lines.

Figure 6-20: Part of ct-$[^{13}\text{C},^1\text{H}]$-HSQC spectrum of the 10% fractionally labeled dh434(0–63) for the stereospecific assignments of the methyl groups in leucines and valines. The duration of the constant time was set to 27 msec so that the prochiral pro-(S) methyl groups of leucine and valine were of opposite sign relative to the pro-(R) methyl group. Negative peaks are indicated by dotted lines.

The stereospecific assignments of the diastereotopic methyl groups of valines and leucines of dh434(0–63) are also summarized in APPENDIX G.
6.8. Empirical correlation between 13C$_{γ}$ chemical shifts and conformations in valines

There has been an attempt to correlate the chemical shifts of the diastereotopic methyl groups and the conformation in which among homologous protein the similar values at the same position among the homologous protein are observed but no clear correlation has been identified (Neri et al., 1990). So far there are few further investigations between the chemical shifts of side chains and the conformations reported. In this study the three homologous proteins with the high resolution NMR structures could be investigated to find a correlation between the chemical shifts and the conformation.

Valine is an unique amino acid type because valine residues is special in having the greatest predominance of just one rotamer in highly refined protein structures i.e. one of the three conformers either gauche$^+$, gauche$^-$, or trans (Ponder & Richard 1987). In addition to this preferable conformation, the relatively short side chain of valine of which chemical shifts could be influenced by the carbonyl group and the backbone conformation in contrast to leucine residue.
Table 6-7: Summary of 13C chemical shift differences for diastereotopic methyl groups of valines

<table>
<thead>
<tr>
<th>residue #</th>
<th>$\delta^{13}C_{\gamma_1}^{13}C_{\gamma_2}$ (dh434(0–63))</th>
<th>$\delta^{13}C_{\gamma_1}^{13}C_{\gamma_2}$ (434(1–69))b</th>
<th>$\delta^{13}C_{\gamma_1}^{13}C_{\gamma_2}$ (P22c2(1–76))c</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-4.6</td>
<td>173.2 ± 8.3</td>
<td>-180.0</td>
</tr>
<tr>
<td></td>
<td>(-53.6 ± 4.0)</td>
<td>(-50.5 ± 10.7)</td>
<td></td>
</tr>
<tr>
<td>24(28a)</td>
<td>-0.7</td>
<td>174.2 ± 4.7</td>
<td>180.1 ± 4.1</td>
</tr>
<tr>
<td></td>
<td>(-29.8 ± 12.0)</td>
<td>(-30.8 ± 5.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+3.2$</td>
<td></td>
<td>$+3.0$</td>
</tr>
<tr>
<td>26(30a)</td>
<td>-53.4 ± 2.3</td>
<td>-57.4 ± 2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(175.9 ± 2.9)</td>
<td>(173.4 ± 6.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.5</td>
<td></td>
</tr>
<tr>
<td>29(33a)</td>
<td>$+2.5$</td>
<td>171.4 ± 2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-51.1 ± 3.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>-53.6 ± 3.13</td>
<td>-68.6 ± 8.5</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td>(173.2 ± 3.3)</td>
<td>(173.2 ± 4.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.3</td>
<td>-1.5</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>171.0 ± 4.8</td>
<td>165.8 ± 8.9</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td>(-36.5 ± 2.2)</td>
<td>(-45.1 ± 2.2)</td>
<td></td>
</tr>
</tbody>
</table>

anumbering for P22c2(1–76).

bfrom Neri et al., 1989 and Neri et al., 1992a; cfrom Neri et al., 1990 and Sevilla-Sierra et al., 1994.

Table 6-7 summarizes the chemical shifts difference between the two diastereotopic methyl groups of a valine, i.e. $\Delta(\delta^{13}C_{\gamma_1} - \delta^{13}C_{\gamma_2})$, and the χ^1 angles for 434(1–69), P22c2(1–76) and dh434(0–63). Here only the chemical shift differences between diastereotopic methyl groups are analyzed which simplify the errors originating from the calibration and differences in the solvent and temperature conditions. It can be readily recognized that the values of the valines in the corresponding position among the three protein are very similar as noticed before (Neri et al., 1990). In particular it is worth noting that the value for Val26 in dh434(0–63) has a close value to that of P22c2(1–76) although 1H resonances of the methyl group of Val26 were shifted by the strong ring current effect from Phe44 which does not exist in P22c2(1–76). This might suggest that the 13C chemical shift difference of the methyl groups in valine could be largely determined by the conformation of valine residues rather than the effects from its neighboring groups in the vicinity. In addition to this observation Table 6-7 indicates a pattern that the residues having negative $\Delta(\delta^{13}C_{\gamma_1} - \delta^{13}C_{\gamma_2})$ have a value of around 180° for the χ^1 angle. In contrast the residues having...
positive $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ have a value around -60° for the χ^1 angle despite of the positions in the amino acid sequence. This observation indicates the correlation between $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ and χ^1 angles in valine residues and tempts to analyze other proteins. Figure 6-21 presents that the results from 11 different proteins including β-sheet proteins, which are 434(1–69)(5), P22c2(1–76) (4), dh434(0–63) (4), Cyclophilin A (8), lck-SH3 (3), E2-DBD (5), SCP-2 (7), P14A(7), dnaJ (2), HSF (8), HIV protease complex (7) (the number of valine residues is indicated in the parenthesis) (Neri et al., 1989; Neri et al., 1990; Sevilla-Sierra et al., 1994; Ottiger et al., 1997; Hiroaki et al., 1996; Liang et al., 1996; Lopez et al, to be published; Fernández et al., 1997; Pellecchia et al., 1996; Damberger et al., 1995; Yamazaki et al., 1996). For P14A, dnaJ, HSF, and HIV protease complex 10% fractional labelling was not applied. NOEs and couplings were used for the stereospecific assignments instead. The pattern for the 11 proteins appears to be more complicated than the expected pattern from the three homologous proteins. It appears that side chain conformations of valines in helices are limited to the trans conformation due to steric hindrance (Figure 6-21A). These valine residues in helices clearly indicate the tendency of negative values for $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ as observed in the variants of 434(1–63). $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ in 19 residues of this category is found to be -1.5 ± 1.1 ppm (Figure 6-21B). This standard deviation is rather large but a very similar value found in the correlation between $^{13}C^{\alpha}/^{13}C^{\beta}$ chemical shifts and the secondary structures (Spera & Bax, 1991). The residues having positive values of $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ in the three homologous proteins are all in the gauche$^-$ conformation. From 11 proteins including these three homologous proteins the valines in gauche$^-$ conformation indicates positive value $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$, $+2.3 \pm 1.1$ppm (Figure 6-21B).

This two distinct patterns were clearly identified in the three homologous proteins, 434(1–63), P22c2(1–76), and dh434(0–63) (Table 6-7). However, analysis of the other proteins shows that the valines having negative values of $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ are not necessarily in trans conformation when they are not in the helical conformation, i.e. $30^\circ < \Psi < 90^\circ$ (Figure 6-21C). The valines of trans side chain conformation in the backbone β conformation, i.e. $90^\circ < \Psi < 200^\circ$ indicate values around zero, i.e. 0.0 ± 0.8 ppm. This observation complicates the interpretation of $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ because the range of $\Delta^{(13}C^{\gamma 1}-^{13}C^{\gamma 2})$ for this category overlaps both the range of α-trans and β-gauche$^-$ conformations.
However, these two distinct patterns of α-trans and β-gauche would be still useful information as a guideline for verification of stereospecific assignments of the methyl groups of valines in particular when fractional samples are not available. This observed correlation implies the potential use of the 13C chemical shifts for three dimensional structure determination of proteins. It may be tempting to use the chemical shifts information of 13C$^\gamma$ of valines for the stereospecific assignments of the diastereotopic methyl groups particularly for the α conformation, it should be noted that the basis of 13C$^\gamma$ data presented in this study is probably too small to use for the stereospecific assignments. The increase of the data will certainly provide a reliable guidance for the assignment verification of valine residues and structure refinements. In addition the increase of the data will also provide the more precise correlations including φ angle and make it possible to produce the chemical shifts difference surface depending on ψ, χ1 angle even including φ angle. For this purpose it is necessary to accumulate the information of both high resolution structures and the precise chemical shifts, and possibly with the information of the side chain dynamics. It may be also possible to obtain the information of the side chain conformation from the $\Delta(^{13}$C$^\gamma^1 - ^{13}$C$^\gamma^2$) chemical shifts of valine residues combined with the backbone conformation that can also be obtained from 13C$^\alpha$, 13C$^\beta$ chemical shifts. This data gained from the three homologous proteins will be of particular interest in cases when the data of NOEs and J coupling are limited such as a case of larger proteins and unfolded proteins.

Very recently Oldfield group reached a same conclusion from ab initio calculation which predicts this correlation and shows a good correlation with experimental data (Havlin et al., 1997; Pearson et al., 1997).
6. Structure determination and Characterization of dh434(0–63) by NMR

6.8

Figure 6-21: (A) The distribution of the χ^1 angle and ψ angle of valines from 11 different proteins. Based on χ^1 and ψ angles, the distribution can be divided into the 4 categories, (α, trans), (β, gauche$^+$), (β, gauche$^-$), and (β, trans). The error bars are obtained from the NMR structures when there are more than one available structures. (B) Histogram showing the $\delta^{(13}C\gamma^1,^{13}C\gamma^2)$ distribution in (α, trans) and (β, gauche$^-$) conformations. (C) Plot of the $\delta^{(13}C\gamma^1,^{13}C\gamma^2)$ versus χ^1 angles for residues in β conformations (90° < ψ < 200°). The regions of gauche$^+$, gauche$^-$ and trans were indicated with dotted boxes.
6.9. Summary of Chapter 6

In Chapter 6 the high resolution structures of dh434(0–63) was determined by NMR spectroscopy, which provides the basis for the analysis of the hydration study of dh434(0–63) described in Chapter 3 and for understanding the mechanism of the hyper-stability of dh434(0–63) described in Chapter 5. The 13C and 15N resonance assignments of dh434(0–63) described in this chapter also provide the necessary information for the analysis of the spectra obtained from the NMR experiments for the hydration study. These resonance assignments also verified the structures calculated from the NMR data of dh434(0–63). H/D exchange rates of amide groups of dh434(0–63) supports the hyper-stability observed from the thermal and chemical denaturation of dh434(0–63) indicating the stable compact globular structure of dh434(0–63).
7. NMR techniques

7.1. Pulse scheme for 'artifact-free' water-protein NOEs detection

NMR spectroscopy has become a powerful method to characterize hydration of macromolecules (Chapter 2). A number of two- and three-dimensional NMR experiments have been developed to investigate the interactions between water and proteins. These pulse schemes for the observation of the interaction between water and proteins can be usually divided into two blocks. The first part is to separate water resonance from the other resonances. For this purpose, 1H homonuclear NOESY, selective pulse, selective excitation of water resonance by radiation dumping, diffusion filtering, relaxation properties, or isotope filtering have been applied (Otting & Wüthrich, 1989; Otting et al., 1991a,b; Kriwacki et al., 1993; Grzesiek & Bax, 1993a, 1993b; Mori et al., 1994; Dötsch & Wider, 1995; Otting & Liepinsh, 1995b; Dalvit & Hommel, 1995; Wider et al., 1996; Mori et al., 1996). The second part of the pulse scheme is a relay step for the separation of signals in the proteins. Either 1H homonuclear TOCSY or heteronuclear correlation schemes have been used for this purpose (Otting et al., 1991b; Grzesiek & Bax, 1993a, 1993b). In our studies of hydration of dh434(0–63) the protein was 13C/15N doubly labeled, so that we could use heteronuclear correlation steps to separate overlapping signals.

Figure 7-1 presents a pulse scheme for the detection of water–protein NOE making use of radiation damping as a selective pulse (Otting & Liepinsh 1995b; Widar et al., 1996). Two different experiments have been recorded to obtain water–protein NOEs. In the experiment denoted with (I) in Figure 7-1 the pulse field gradient pulse was placed at the end of the mixing time so that the water magnetization was rotated back to $+Z$ axis due to radiation damping during the mixing time and all the other transverse magnetization was dephased at the end of mixing time by a strong gradient pulse (G3). In the second experiment as denoted with (II) in Figure 7-1 the radiation damping was prevented by applying a strong field gradient pulse (G3) at the beginning of the mixing time and a weak gradient pulse during the entire mix-
As a consequence all transverse magnetization including water magnetization was dephased by the gradient pulse. The spectrum resulting from the difference between two experiments must therefore contain water-protein NOEs, exchange peaks with water and, possibly HN-Hα NOEs deriving from Hα that resonate at a close chemical shift to the water chemical shift.

Figure 7-2 shows such a spectrum recorded with a sample of 5 mM uniformly 15N labeled dh434(0–63). The experiment as described in Figure 7-1 was measured at two different 1H frequencies of 750 MHz and 400 MHz. The spectrum should contain only water-protein NOEs, exchange peaks with water and, possibly HN-Hα NOEs in case that Hα protons have the same chemical shift of water. Surprisingly the spectrum measured at the 1H frequency of 750 MHz contains many cross peaks unexpectedly corresponding to all amide backbone groups of dh434(0–63) including some buried amide groups. For example, the arrows in Figure 7-2A indicate the positions of the backbone amide resonances of the residues with less than 5% of the solvent accessible surface area. This observation could lead to a hypothesis that...
dh434(0–63) might have non-compact structures such as ‘molten globule structure’ in which water is penetrating into the deep core of the molecule because this could arise from a number of substitution of amino acids introduced in wild-type 434(1–63) (Chapter 4). Contrarily the other data such as H/D exchange rates, thermal and chemical denaturations suggest the more compact and stable structure of dh434(0–63) as compared with the wild-type 434(1–63) as described in Chapter 5 and Chapter 6. Therefore the cause of unexpected peaks at 1H frequency of 750 MHz must originate from the experimental scheme not from the feature of the protein. In addition the spectrum measured with the same pulse scheme at 1H frequency of 400 MHz is rather different from one measured at 1H frequency of 750 MHz. In particular the absence of the peaks from buried residues indicates that the data at 1H frequency of 400 MHz are much more reasonable (Figure 7-2B). This observation suggests that there are undesirable effects in the pulse scheme which would produce some artifacts in the spectrum only at the high magnetic field.
In fact the extensive studies as described in Sobol et al. 1998 have demonstrated that radiation damping field, despite its small magnitude, is able to disturb magnetization of nuclei resonating 2–3 kHz away from the solvent signal. The amplitude of such disturbances can be of the order of 1% of the nuclear magnetization and in particular of importance for the detection of weak water-protein NOEs such as NOEs originating from the surface hydration water. This effect was vividly manifested in the spectrum at 1H frequency of 750 MHz (Figure 7-2A). Since radiation
damping is a well known effect in high resolution solution NMR, in which solvent magnetization is rotated back to the external magnetic field direction by the strong coupling of the magnetization with the resonant circuit of the detection system, the effect becomes more and more important at higher static magnetic field strength and with improvements in the probe quality factors Q.

To overcome this problem at high magnetic field, a new pulse scheme was developed (Figure 7-3). The pulse scheme was designed so as to suppress the undesired excitation by radiation damping and to reduce the radiation damping and demagnetization field effect through the entire pulse scheme. The scheme starts with two gradient with a 90 degree 1H pulse surrounded with two gradient pulses (G1) in order to keep the initial magnetization constant at the beginning of the pulse sequence. The relaxation delay (t_{rel}) of 2.5 sec ensures the recovery of the magnetization of water and proteins. The double filter unit follows the relaxation delay, which eliminates all proton magnetization attached to either 13C or 15N nuclei (Gemmecker et al., 1993). In the first experiment denoted with (I) in Figure 7-3 during the double filter unit the water magnetization was refocused by 180 degree 1H pulse and two equivalent gradient pulses (G2) and restored to +Z axis by a selective water pulse at the point a in Figure 7-3. All the transverse components were dephased by a Z-gradient pulse (G3) after this selective pulse. At this pointe only the water magnetization is aligned to +Z axis. All the other magnetization from the protein should be dephased by the gradient pulses including the protons under and near the water resonance. In the second experiments denoted with (II) all the transverse magnetization including water at the point a was dephased by a strong gradient pulse (G3). The both scans after the mixing time were followed by a heteronuclear relay step, i.e. either $[^{15}\text{N}, ^{1}\text{H}]$-, or $[^{13}\text{C}, ^{1}\text{H}]$-HSQC with sensitivity enhancement schemes (Kay et al., 1992; Schueler et al., 1994). The subtraction of these two experiments produces the spectrum containing water-protein NOEs, exchange peaks with water. During the HSQC-relay step, the gradient pulses were placed carefully during all the delay periods to dephase water magnetization and to suppress radiation damping and demagnetization effect which could also produce artifacts in the spectrum. The control experiments of the pulse scheme were performed to obtain artifacts-free spectra by following the test procedure that include a cancellation test for the relay step, a difference test with presaturation of the sol-
vent signal and an experiment with short mixing time (<5 msec) or even build-up curves of the solvent-protein NOE. Thus the artifacts-free water-protein NOE/ROE spectra with the pulse scheme described in Figure 7-3 are shown in Chapter 3 and analysed for the detailed investigation of water-protein interactions in dh434(0–63).
7.2. The 2D NMR Experiments H(C)CO₂ and HCCO₂

Side chain carboxylates of Asp and Glu residues are frequently involved in active sites of proteins, in salt bridges, and in hydrogen bonds. The identification and the determination of their pKₐ values is of importance to understand the mechanisms of catalytic reactions as well as the contributions of these groups to the stability of proteins by formation of salt bridges and hydrogen bonds, and to characterize transient hydrogen bonding interactions on the protein surface (Anderson et al., 1990; Szyperski et al., 1994; Jeng & Dyson, 1996). Apparent pKₐ shift of ionizable groups can be used to assess the contribution of each ionizable group to the stability of the folded state (Anderson et al., 1990). A buried salt-bridge can be found in the DNA binding domain of 434 repressor, 434(1–63) (Mondragon et al., 1989; Neri et al., 1992; Pervushin et al., 1996). Determination of pKₐ of side chain carboxylates in the salt-bridge of 434(1–63) is of interest to assess the contribution of the buried salt-bridge to the stability of the protein because it is generally still unclear what contribution such buried salt bridge interactions per se make to the stability of proteins (Mrabet et al., 1992; Yang & Honig, 1993; Hendsch & Tidor, 1994; Borders et al., 1994; Marqusee & Sauer, 1994; Waldburger et al., 1995; Tissot et al., 1996). pH dependence of the ¹³C chemical shifts of the side chain carbonyl group can be one of powerful methods to determine the individual pK since the chemical shifts is very sensitive to the ionization states. Recently, 2D ct-H(C)CO adapted to detect side chain ¹³CO resonance has been used to determine pKₐ values for the carboxylates in ¹³C/¹⁵N-labelled proteins (Yamazaki et al., 1993; Jeng & Dyson, 1996; Oda et al., 1994; Wang et al., 1996; Qin et al., 1996).

Figure 7-4 presents the pulse scheme of the 2D H(C)CO₂ and the 2D HCCO₂ experiments, which designed to eliminate cross peaks originating from the side chain -CH₂-CO-NH₂ moieties likewise occurs for the backbone fragments -CH- CO- NH-. This filtration of cross peaks is achieved by the delay τ₄, which is set to 32 msec, and pulses for ¹⁵N atoms in Figure 7-4. Such delay and pulses convert the transferred magnetization on ¹³CO in -CH₂-CO-NH₂-, -CH- CO-NH- moieties into the magnetization, which can not be refocused to observable magnetization by the successive pulses. In addition the gradient pulse after the 90° pulse for ¹⁵N atoms...
dephase the transverse magnetization at the point c. Therefore cross peaks only originating from Asp and Glu appear in the spectrum of the 2D H(C)CO$_2$ (Figure 7-5B). Moreover, elimination of signals arising from Asn and Gln residues notably reduces the total number of cross-peaks, making this experiment ideally suited for use
of the projection technique which in addition provides the $^{13}\text{C}\beta/\gamma$ chemical shifts (Szyperski et al., 1993a; Szyperski et al., 1993b). Such experiment can be presented as 2D HCCO_2 experiments by setting the κ to non-zero values, which provides $^{13}\text{C}\beta/\gamma$ chemical shifts encoded as splitting of peaks. This information could be useful for the assignments of the side chain carboxylates.

The 2D H(CO_2 and the 2D HCCO_2 experiments described here greatly reduce the problem of spectral overlap when compared with 2D ct-H(CA)CO (Figure 7-5) and thus circumvent the necessity to produce selectively $^{13}\text{CO}_2$ labelled samples (Anderson et al., 1990; Anderson et al., 1993; McIntosh et al., 1996). Since it also
provides correlations with $C^{\beta/\gamma}$, 2D HCCO$_2$ is most informative for obtaining the resonance assignments, whereas 2D H(C)CO$_2$ is the suitable experiment for pH-titration of the carboxylate groups. Normally, there is hardly any interference between the resonances of the side chain carboxylates of Asp and Glu and the C-terminus.

The spectra of 2D ct-H(CA)CO adapted for side chain correlation and 2D H(C)CO$_2$ experiments of a 1 mM 13C,15N-doubly-labeled 434(1–63) solution are shown in Figure 7-5 at 13°C. In the 2D ct-H(CA)CO spectrum in Figure 7-5A all correlations between 1H$^\beta$ and 13CO$_\gamma$ of Asp57, Asn16, Asn36 and Asn61 as well as the correlations between 1H$_\gamma$ and 13CO$_\delta$ of the Glu residues in positions 19, 32, 35, and 47 and the Gln residues 12, 17, 22, 28, 29, and 33 are observed. In the 2D H(C)CO$_2$ spectrum in Figure 7-5B only the cross peaks corresponding to Asp and Glu are selected (weak cross peaks from the C-terminal residue were observed outside of the spectral region shown). In particular, the assignment of the side chain carboxyl carbon of Asp57 in the 2D ct-H(CA)CO spectrum is ambiguous because of overlap with the resonances of Gln 33 (Figure 7-5A). This overlap, and thus the assignment ambiguity, is neatly resolved in Figure 7-5B. With use of 2D H(C)CO$_2$ experiment pK of side chain carboxyrates were determined in 434(1–63). pK 4.4 for Glu19, pK 4.1 for Glu32, pK 2.0 for Glu35, pK 4.1 for Glu47, pK 3.4 for Asp56 could be determined by the pH titration using 13C$_\psi/\delta$ chemical shifts, which generally agree with data obtained from 1H chemical shifts (Dötsch, 1994). These determined pK values could be used for analysis of the contribution to the protein stability (Chapter 5). The newly designed 2D H(C)CO$_2$ experiment simplifies the spectrum which makes the procedure of pH titration easier. pH titration by measuring a series of the spectra is a simple but still tedious procedure. Improvement in the procedure which can overcome this tedious adjustment of pH in pH titration such as manual adjustment of pH values is of special interest for the next development of the procedure.
8. References

Clore, G.M., Bax, A., Wingfield, P.T. & Gronenborn, A.M. (1990) Identification and localization of bound internal water in the solution structure of interleukin 1β by heteronuclear three-dimensional 1H rotating-frame Overhauser 15N-1H multiple quantum coherence NMR spec-

Grzesiek, S. & Bax, A. (1993b) Measurements of amide proton exchange rates and NOEs with water...
in 13C/15N-enriched calineurin B J. Biomol. NMR \textbf{3}, 627–638.

Langsetmo, K., Fuchs, J.A. & Woodward, C. (1991b) The conserved, buried aspartic acid in oxidized Escherichia coli thioredoxin has a pKa of 7.5. Its titration produces a related shift in global

Spolar, R.S. & Record, M.T. J.r. (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784.

Sundaralingam, M. & Sekharudu, Y.C. (1989) Water-inserted alpha-helical segments implicate re-
verse turns as folding intermediates. Science **244**, 1333–1337.

Appendix A

Plasmid map of pT7-7
Appendix B

DNA sequence of P22/434(0–63) from the plasmid pT2434

ATG TTG ATG GGT GAG CGT ATT CGC GCT CGA AGA ATT CAG CTT GGA CTT AAC CAG GCT
M_0 L_1 M_2 G_3 E_4 R_5 I_6 R_7 A_8 R_9 R10 I11 Q12 L13 G14 L15 N16 Q17 A18

GAA CTT GCT CAA AAG GTG GGG ACT ACC CAG CAG TCG ATC GAG CAG CTC GAA AAC GGT
E19 L20 A21 Q22 K23 V24 G25 T26 T27 Q28 Q29 S30 I31 E32 Q33 L34 E35 N36 G37

AAA ACT AAG CGA CCA CGC TTT TTA CCA GAA CTT GCC TCA GCT CTT GCC GTG GTA AGT GTT
K38 T39 K40 R41 P42 R43 F44 L45 P46 E47 L48 A49 S50 A51 L52 G53 V54 S55 V56

GAC TGG CTG CTC AAT GGC ACC TAA
D57 W58 L59 L60 N61 G62 T63 STP

Appendix C

DNA sequence of P22c2(5-68) from the plasmid pT77/4AF

ATG TTG ATG GGT GAG CGT ATT CGC GCT CGA AGA AAA AAA CTC AAG ATT AGA
M_0 L_5 M_6 G_7 E_8 R_9 R10 I11 Q12 A12 R13 R14 K15 K16 L17 K18 I19 R20

CAA GCC GCT CTT GGT CAA AAG ATG GTG GGA GTG TCT AAT GTT GCA ATA TCG CAA
Q21 A22 A23 L24 G25 K26 M27 V28 G29 V30 S31 V32 A33 I34 S36 Q37

TGG GAG CGC TCG GAG ACT GAG CCA AAT GGG GAG AAC CTG TTG GCA CTT TCG
W38 E39 R40 S41 E42 T43 E44 P45 N46 G47 E48 N49 L50 L51 A52 L53 S54

AAG GCT CTT CAG TGC TCC CCT GAC TAT TTG CTG AAA GGA GAT TAA
K55 A56 L57 Q58 C59 S60 P61 D62 Y63 L64 L65 K66 G67 D68 STP
Appendix D

DNA sequence of the plasmid of pGFC containing the final dh434(0–63) with a replacement of A50R.

1/1 31/11
ATG TTG ATG GGT GAG CGT ATT CGC GCT CGA AGA ATT CAG CTT GGA CTT AAC CAG GCT GAA
M L M G E R I R A R R I Q L G L N Q A E
61/21
CTT GCT CAA AAG GTG GGG GTC GAC CAG CAG GCG ATC GAG CAG CTC GAA AAC GGT AAA GCG
L A Q K V G V D Q Q A I E Q L E N G K A
91/31
AAG CGA CCA CGC TTT TTA CCA GAA CTT GGC CAG GCT CTT GCC GTA GCG GTT GAC TGG CTG
K R P R F L P E L A R A L G V A V D W L
121/41 151/51
CTC AAT GGC ACC TAA GCT TAT CAT CGA TGA TAA GCT GTC AAC
L N G T * A Y H R * * A V N

Appendix E

DNA sequence of plasmid pT434HK

1/1 31/11
AGA CCA CAA CGG TTT CCC TGT AGA AAT ATT TTT GTT TAA CTT TAA GAA GGA GAT ATA GAT
R P Q R F P C R N I F V * L * E G D I D
61/21
ATG AGT ATT TCT TCC AGG GTA AAA AGC AAA AGA ATT CAG CTT GGA CTT AAC CAG GCT GAA
M S I S S R V K S K R I Q L G L N Q A E
91/31
CTT GCT CAA AAG GTG GGG ACT ACC CAG CAG TCG ATC GAG CAG CTC GAA AAC GGT AAA ACT
L A Q K V G T T Q Q S I E Q L E N G K T
121/41 151/51
CTC AAT GGC AAA CAC CAC CAT CAT CAC CAT ATG TAA GCT TAA C
L N G K H H H H H M * A *
Appendix F

1H chemical shifts table of dh434(0–63)

<table>
<thead>
<tr>
<th></th>
<th>1H</th>
<th>1H</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1H</td>
<td>1H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>$^\alpha$</td>
<td>$^\beta$</td>
</tr>
<tr>
<td>Met</td>
<td>0</td>
<td>4.13</td>
<td>2.07, 2.16</td>
</tr>
<tr>
<td>Leu</td>
<td>1</td>
<td>9.12</td>
<td>4.62</td>
</tr>
<tr>
<td>Met</td>
<td>2</td>
<td>9.10</td>
<td>3.74</td>
</tr>
<tr>
<td>Gly</td>
<td>3</td>
<td>9.23</td>
<td>3.60, 4.20</td>
</tr>
<tr>
<td>Glu</td>
<td>4</td>
<td>6.87</td>
<td>4.14</td>
</tr>
<tr>
<td>Arg</td>
<td>5</td>
<td>7.82</td>
<td>4.09</td>
</tr>
<tr>
<td>Ile</td>
<td>6</td>
<td>8.31</td>
<td>3.47</td>
</tr>
<tr>
<td>Arg</td>
<td>7</td>
<td>7.87</td>
<td>4.02</td>
</tr>
<tr>
<td>Ala</td>
<td>8</td>
<td>8.26</td>
<td>4.09</td>
</tr>
<tr>
<td>Arg</td>
<td>9</td>
<td>8.45</td>
<td>4.32</td>
</tr>
<tr>
<td>Arg</td>
<td>10</td>
<td>9.05</td>
<td>3.77</td>
</tr>
<tr>
<td>Ile</td>
<td>11</td>
<td>8.46</td>
<td>3.84</td>
</tr>
<tr>
<td>Gln</td>
<td>12</td>
<td>8.26</td>
<td>4.09</td>
</tr>
<tr>
<td>Leu</td>
<td>13</td>
<td>7.78</td>
<td>4.27</td>
</tr>
<tr>
<td>Gly</td>
<td>14</td>
<td>8.16</td>
<td>3.91, 4.05</td>
</tr>
<tr>
<td>Leu</td>
<td>15</td>
<td>7.57</td>
<td>4.86</td>
</tr>
<tr>
<td>Asn</td>
<td>16</td>
<td>9.27</td>
<td>4.78</td>
</tr>
<tr>
<td>Gln</td>
<td>17</td>
<td>8.99</td>
<td>3.67</td>
</tr>
<tr>
<td>Ala</td>
<td>18</td>
<td>8.44</td>
<td>3.88</td>
</tr>
<tr>
<td>Glu</td>
<td>19</td>
<td>8.94</td>
<td>4.07</td>
</tr>
<tr>
<td>Leu</td>
<td>20</td>
<td>8.06</td>
<td>4.09</td>
</tr>
<tr>
<td>Ala</td>
<td>21</td>
<td>8.44</td>
<td>3.50</td>
</tr>
<tr>
<td>Gln</td>
<td>22</td>
<td>7.96</td>
<td>4.10</td>
</tr>
<tr>
<td>Lys</td>
<td>23</td>
<td>7.63</td>
<td>4.11</td>
</tr>
<tr>
<td>Val</td>
<td>24</td>
<td>7.66</td>
<td>3.92</td>
</tr>
<tr>
<td>Gly</td>
<td>25</td>
<td>8.00</td>
<td>3.86, 4.11</td>
</tr>
<tr>
<td>Val</td>
<td>26</td>
<td>7.57</td>
<td>4.64</td>
</tr>
<tr>
<td>Asp</td>
<td>27</td>
<td>7.91</td>
<td>4.73</td>
</tr>
<tr>
<td>Gln</td>
<td>28</td>
<td>8.97</td>
<td>3.58</td>
</tr>
<tr>
<td>Gln</td>
<td>29</td>
<td>8.74</td>
<td>4.01</td>
</tr>
<tr>
<td>Ala</td>
<td>30</td>
<td>7.80</td>
<td>4.20</td>
</tr>
<tr>
<td>Ile</td>
<td>31</td>
<td>7.15</td>
<td>3.93</td>
</tr>
<tr>
<td>Residue</td>
<td>pKα</td>
<td>pKβ</td>
<td>pKγ</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Glu 32</td>
<td>8.35</td>
<td>4.02</td>
<td>2.05, 2.21</td>
</tr>
<tr>
<td>Glu 33</td>
<td>8.39</td>
<td>4.28</td>
<td>2.04, 2.09</td>
</tr>
<tr>
<td>Leu 34</td>
<td>7.53</td>
<td>4.26</td>
<td>1.64, 2.07</td>
</tr>
<tr>
<td>Glu 35</td>
<td>8.54</td>
<td>4.04</td>
<td>1.89, 1.95</td>
</tr>
<tr>
<td>Asn 36</td>
<td>8.25</td>
<td>4.74</td>
<td>2.85, 3.01</td>
</tr>
<tr>
<td>Gly 37</td>
<td>7.51</td>
<td>4.11, 4.15</td>
<td></td>
</tr>
<tr>
<td>Lys 38</td>
<td>8.52</td>
<td>4.28</td>
<td>1.83, 1.94</td>
</tr>
<tr>
<td>Ala 39</td>
<td>7.75</td>
<td>4.47</td>
<td>1.28</td>
</tr>
<tr>
<td>Lys 40</td>
<td>8.38</td>
<td>4.31</td>
<td>1.69, 1.88</td>
</tr>
<tr>
<td>Arg 41</td>
<td>8.52</td>
<td>4.22</td>
<td>1.57, 1.76</td>
</tr>
<tr>
<td>Pro 42</td>
<td>-</td>
<td>4.45</td>
<td>0.37, 1.73</td>
</tr>
<tr>
<td>Arg 43</td>
<td>9.24</td>
<td>4.22</td>
<td>1.93, 2.00</td>
</tr>
<tr>
<td>Phe 44</td>
<td>6.46</td>
<td>5.33</td>
<td>2.86, 3.67</td>
</tr>
<tr>
<td>Leu 45</td>
<td>7.38</td>
<td>4.08</td>
<td>1.75, 1.75</td>
</tr>
<tr>
<td>Pro 46</td>
<td>-</td>
<td>4.16</td>
<td>2.40, 2.40</td>
</tr>
<tr>
<td>Glu 47</td>
<td>8.90</td>
<td>4.10</td>
<td>2.14, 2.47</td>
</tr>
<tr>
<td>Leu 48</td>
<td>8.66</td>
<td>4.15</td>
<td>1.68, 2.21</td>
</tr>
<tr>
<td>Ala 49</td>
<td>8.77</td>
<td>3.82</td>
<td>1.57</td>
</tr>
<tr>
<td>Arg 50</td>
<td>7.89</td>
<td>4.16</td>
<td>1.97, 1.97</td>
</tr>
<tr>
<td>Ala 51</td>
<td>8.13</td>
<td>4.13</td>
<td>1.41</td>
</tr>
<tr>
<td>Leu 52</td>
<td>7.78</td>
<td>4.30</td>
<td>1.61, 1.96</td>
</tr>
<tr>
<td>Gly 53</td>
<td>8.07</td>
<td>3.91, 3.97</td>
<td></td>
</tr>
<tr>
<td>Val 54</td>
<td>8.00</td>
<td>4.61</td>
<td>2.13</td>
</tr>
<tr>
<td>Ala 55</td>
<td>8.46</td>
<td>4.59</td>
<td>1.61</td>
</tr>
<tr>
<td>Val 56</td>
<td>9.10</td>
<td>3.47</td>
<td>2.08</td>
</tr>
<tr>
<td>Asp 57</td>
<td>8.71</td>
<td>4.38</td>
<td>2.68, 2.70</td>
</tr>
<tr>
<td>Trp 58</td>
<td>7.28</td>
<td>4.19</td>
<td>3.39, 3.57</td>
</tr>
<tr>
<td>Leu 59</td>
<td>7.74</td>
<td>3.57</td>
<td>1.69, 2.22</td>
</tr>
<tr>
<td>Leu 60</td>
<td>7.99</td>
<td>4.08</td>
<td>1.42, 1.69</td>
</tr>
<tr>
<td>Asn 61</td>
<td>8.09</td>
<td>4.99</td>
<td>2.74, 2.79</td>
</tr>
<tr>
<td>Gly 62</td>
<td>8.31</td>
<td>3.00, 3.63</td>
<td></td>
</tr>
<tr>
<td>Ala 63</td>
<td>7.71</td>
<td>4.25</td>
<td>1.42</td>
</tr>
</tbody>
</table>
Appendix G

15N, 13C chemical shifts table of dh434(0–63)

<table>
<thead>
<tr>
<th>#</th>
<th>N</th>
<th>C<sup>a</sup></th>
<th>C<sup>b</sup></th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met 0</td>
<td>-</td>
<td>54.8</td>
<td>33.6</td>
<td>Cγ 30.9; Cδ 16.5</td>
</tr>
<tr>
<td>Leu 1</td>
<td>124.0</td>
<td>53.6</td>
<td>43.2</td>
<td>Cδ 26.8; Cδ 22.1, 25.4</td>
</tr>
<tr>
<td>Met 2</td>
<td>121.8</td>
<td>59.6</td>
<td>33.5</td>
<td>Cδ 30.7; CδCH<sub>3</sub> 16.6</td>
</tr>
<tr>
<td>Gly 3</td>
<td>105.6</td>
<td>48.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu 4</td>
<td>118.1</td>
<td>58.2</td>
<td>29.7</td>
<td>Cδ 36.6</td>
</tr>
<tr>
<td>Arg 5</td>
<td>121.5</td>
<td>60.1</td>
<td>30.0</td>
<td>Cδ 29.1; Cδ 42.4</td>
</tr>
<tr>
<td>Ile 6</td>
<td>118.9</td>
<td>66.0</td>
<td>38.1</td>
<td>Cδ 30.1; CδCH<sub>3</sub> 16.3; Cδ 15.4</td>
</tr>
<tr>
<td>Arg 7</td>
<td>118.4</td>
<td>59.2</td>
<td>30.3</td>
<td>Cδ 27.1; Cδ 43.2</td>
</tr>
<tr>
<td>Ala 8</td>
<td>117.9</td>
<td>54.9</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>Arg 9</td>
<td>118.9</td>
<td>56.7</td>
<td>28.9</td>
<td>Cδ 28.0; Cδ 41.8</td>
</tr>
<tr>
<td>Arg 10</td>
<td>120.7</td>
<td>60.8</td>
<td>28.6</td>
<td>Cδ 27.9; Cδ 41.0; δNH<sub>2</sub> 9.0</td>
</tr>
<tr>
<td>Ile 11</td>
<td>118.4</td>
<td>64.9</td>
<td>37.9</td>
<td>Cδ 29.6; CδCH<sub>3</sub> 16.5; δCH<sub>3</sub> 13.5</td>
</tr>
<tr>
<td>Gln 12</td>
<td>123.6</td>
<td>58.9</td>
<td>28.3</td>
<td>Cδ 33.3; Ne2 111.6</td>
</tr>
<tr>
<td>Leu 13</td>
<td>117.0</td>
<td>54.9</td>
<td>42.6</td>
<td>Cδ 26.9; Cδ 21.6, 25.5</td>
</tr>
<tr>
<td>Gly 14</td>
<td>108.7</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu 15</td>
<td>118.3</td>
<td>53.3</td>
<td>44.5</td>
<td>Cδ 26.0; Cδ 22.7, 25.9</td>
</tr>
<tr>
<td>Asn 16</td>
<td>121.8</td>
<td>51.2</td>
<td>38.1</td>
<td>Ne1 110.9</td>
</tr>
<tr>
<td>Gln 17</td>
<td>117.0</td>
<td>60.9</td>
<td>29.0</td>
<td>Cδ 34.4; Ne2 112.5</td>
</tr>
<tr>
<td>Ala 18</td>
<td>121.9</td>
<td>55.3</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>Gln 19</td>
<td>119.6</td>
<td>58.3</td>
<td>30.2</td>
<td>Cδ 36.0</td>
</tr>
<tr>
<td>Leu 20</td>
<td>119.1</td>
<td>57.2</td>
<td>40.9</td>
<td>Cδ 26.8; Cδ 22.7, 26.6</td>
</tr>
<tr>
<td>Ala 21</td>
<td>120.2</td>
<td>55.2</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>Gln 22</td>
<td>116.3</td>
<td>58.7</td>
<td>27.9</td>
<td>Cδ 33.5; Ne2 111.4</td>
</tr>
<tr>
<td>Lys 23</td>
<td>117.8</td>
<td>58.5</td>
<td>32.8</td>
<td>Cδ 24.9; Cδ 29.0; Cδ 41.6</td>
</tr>
<tr>
<td>Val 24</td>
<td>113.8</td>
<td>62.2</td>
<td>32.2</td>
<td>Cδ 22.3, 23.1</td>
</tr>
<tr>
<td>Gly 25</td>
<td>108.3</td>
<td>45.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val 26</td>
<td>111.6</td>
<td>58.1</td>
<td>33.6</td>
<td>Cδ 16.9, 20.2</td>
</tr>
<tr>
<td>Asp 27</td>
<td>117.1</td>
<td>52.2</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>Gln 28</td>
<td>120.9</td>
<td>59.8</td>
<td>27.4</td>
<td>Cδ 32.9; Ne2 111.6</td>
</tr>
<tr>
<td>Gln 29</td>
<td>118.4</td>
<td>58.8</td>
<td>27.6</td>
<td>Cδ 34.0; Ne2 112.1</td>
</tr>
<tr>
<td>Ala 30</td>
<td>121.3</td>
<td>54.6</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>Ile 31</td>
<td>115.7</td>
<td>60.6</td>
<td>34.7</td>
<td>Cδ 26.4; CδCH<sub>3</sub> 18.2; Cδ 37.7</td>
</tr>
<tr>
<td>Glu 32</td>
<td>121.6</td>
<td>59.3</td>
<td>28.4</td>
<td>Cδ 34.5</td>
</tr>
<tr>
<td>Gln 33</td>
<td>115.2</td>
<td>57.8</td>
<td>28.3</td>
<td>Cδ 34.2; Ne2 111.7</td>
</tr>
<tr>
<td>Leu 34</td>
<td>119.2</td>
<td>57.1</td>
<td>42.4</td>
<td>Cδ 26.3; Cδ 25.2, 26.4</td>
</tr>
<tr>
<td>Glu 35</td>
<td>118.2</td>
<td>59.5</td>
<td>29.4</td>
<td>Cδ 36.9</td>
</tr>
<tr>
<td>Asn 36</td>
<td>114.3</td>
<td>52.1</td>
<td>38.2</td>
<td>Ne1 109.4</td>
</tr>
<tr>
<td>Gly 37</td>
<td>106.9</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys 38</td>
<td>120.1</td>
<td>56.5</td>
<td>32.6</td>
<td>Cδ 25.1; Cδ 28.7; Cδ 41.9</td>
</tr>
<tr>
<td>Ala 39</td>
<td>121.7</td>
<td>51.2</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1H</td>
<td>13C</td>
<td>15N</td>
<td>1H</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Lys 40</td>
<td>120.3</td>
<td>55.4</td>
<td>33.4</td>
<td>γC 24.7; δC 28.6; εC 41.8</td>
</tr>
<tr>
<td>Arg 41</td>
<td>119.4</td>
<td>53.4</td>
<td>30.0</td>
<td>γC 26.6; δC 43.2</td>
</tr>
<tr>
<td>Pro 42</td>
<td>-</td>
<td>60.7</td>
<td>31.3</td>
<td>γC 26.6; δC 49.5</td>
</tr>
<tr>
<td>Arg 43</td>
<td>121.4</td>
<td>58.4</td>
<td>29.7</td>
<td>γC 26.8; δC 42.9</td>
</tr>
<tr>
<td>Phe 44</td>
<td>110.7</td>
<td>54.3</td>
<td>36.6</td>
<td>δC 132.7; εC 131.4; ζC 129.9</td>
</tr>
<tr>
<td>Leu 45</td>
<td>121.7</td>
<td>59.0</td>
<td>39.1</td>
<td>γC 25.0; δC 24.6, 24.8</td>
</tr>
<tr>
<td>Pro 46</td>
<td>-</td>
<td>66.4</td>
<td>30.4</td>
<td>γC 28.6; δC 50.0</td>
</tr>
<tr>
<td>Glu 47</td>
<td>119.4</td>
<td>60.2</td>
<td>28.7</td>
<td>γC 37.0</td>
</tr>
<tr>
<td>Leu 48</td>
<td>123.0</td>
<td>57.7</td>
<td>42.6</td>
<td>γC 26.7; δC 24.9, 26.7</td>
</tr>
<tr>
<td>Ala 49</td>
<td>121.3</td>
<td>55.4</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>Arg 50</td>
<td>116.4</td>
<td>59.1</td>
<td>29.8</td>
<td>γC 27.2; δC 43.1</td>
</tr>
<tr>
<td>Ala 51</td>
<td>121.8</td>
<td>54.5</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>Leu 52</td>
<td>112.9</td>
<td>53.3</td>
<td>42.8</td>
<td>γC 26.3; δC 22.1, 26.7</td>
</tr>
<tr>
<td>Gly 53</td>
<td>111.4</td>
<td>57.7</td>
<td>35.8</td>
<td>γC 17.9, 20.6</td>
</tr>
<tr>
<td>Val 54</td>
<td>109.9</td>
<td>57.7</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>Ala 55</td>
<td>122.0</td>
<td>50.7</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>Val 56</td>
<td>123.7</td>
<td>67.4</td>
<td>31.3</td>
<td>γC 21.0, 23.4</td>
</tr>
<tr>
<td>Asp 57</td>
<td>115.8</td>
<td>57.0</td>
<td>40.2</td>
<td></td>
</tr>
<tr>
<td>Trp 58</td>
<td>119.2</td>
<td>61.4</td>
<td>28.2</td>
<td>δ1C 127.0; ε1C 119.4; ζ1C 114.6; η1C 120.4; ζ1C 124.0; Ne1 130.0</td>
</tr>
<tr>
<td>Leu 59</td>
<td>118.0</td>
<td>58.4</td>
<td>41.4</td>
<td>γC 26.2; δC 23.7, 25.8</td>
</tr>
<tr>
<td>Leu 60</td>
<td>115.6</td>
<td>57.5</td>
<td>43.0</td>
<td>γC 26.5; δC 22.9, 25.2</td>
</tr>
<tr>
<td>Asn 61</td>
<td>113.1</td>
<td>53.0</td>
<td>40.9</td>
<td>Nδ1 114.7</td>
</tr>
<tr>
<td>Gly 62</td>
<td>111.0</td>
<td>44.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala 63</td>
<td>127.2</td>
<td>53.9</td>
<td>20.3</td>
<td></td>
</tr>
</tbody>
</table>

For the diastereotopic methyl groups of valines and leucines, the pro-(R) methyl groups (γ1 and δ1) are underlined. The chemical shifts are relative to DSS with the following δ ratio: 13C/1H = 0.251449530, 15N/1H = 0.101329118 (Wishart et al., 1995).
Appendix H

Comparison of the primary structures of 434(1–63) variants and P22c2.

dh434 (0–63) MLMGERIRARRIQGLNQAELAQPVGVDQQQAIQEQLENGKAK–RPRLPHELAAALGVAWDLLNGA
434 (1–63) SISSRVSQRKRIQLGNEAQLQKVGGTTQSQIEQLENGKTK–RPRLPHELASALGVSVDLLLLNT
P22/434 (0–63) MLMGERIRARRIQGLNQAELAQPVGTTQSQIEQLENGKTK–RPRLPHELASALGVSVDLLLLNT
P22c2 (5–68) MLMGERIRARRKKLRIRQAALGMKVGVSNVAISQWERSETPENGELLSKALQCSPYDULKGD

Comparison of the primary structures of the homologous proteins.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Primary Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>434Cro</td>
<td>MLMGERIRARRIQGLNQAELAQPVGTTQSQIEQLENGKTK–RPRLPHELASALGVSVDLLLLNT</td>
</tr>
<tr>
<td>RPC2_BPP22</td>
<td>MNTQLGERIRARRKKLRIRQAALGMKVGVSNVAISQWERSETPENGELLSKALQCSPYDULKGDLQSHR</td>
</tr>
<tr>
<td>Cro Proteins</td>
<td></td>
</tr>
<tr>
<td>434Cro</td>
<td>MLMGERIRARRIQGLNQAELAQPVGTTQSQIEQLENGKTK–RPRLPHELASALGVSVDLLLLNT</td>
</tr>
<tr>
<td>Lamda Cro</td>
<td>MERTKILEQANKILDIEQASLSKQSGQGREGKVQGKSGEVRSAKLGAMVRSAKLGAMVRSAKLGAMVRSAK</td>
</tr>
<tr>
<td>RCRO_BPHK0</td>
<td>MYKRDWHSQRHARQRTVQQKGRSRSRHSRSRHSRSRHSRSRHSRSRHSRSRHSRSRHSRSRHSRSRHSRSRHSRS</td>
</tr>
</tbody>
</table>
Curriculum vitae

Personal:

Name
Hideo Iwai

Date of Birth
8th May 1968

Place of Birth
Kurobe, Japan

Nationality
Japan

Education:

1975 – 1981
Mikkaichi Primary School, Kurobe, Japan

1981 – 1984
Sakurai Junior High School, Kurobe, Japan

1984 – 1987
Uozu High School, Toyama, Japan

1988 – 1990
Natural Sciences II, The College of Arts and Sciences, The University of Tokyo, Japan

1990 – 1992
Department of Pharmaceutical Science, The University of Tokyo, Japan.

B.Sc. (Pharmaceutical Science)

1992 – 1994
Division of Pharmaceutical Sciences, Graduate School, The University of Tokyo, Japan

M.Sc. (Pharmaceutical Science)

Supervised by Prof. Dr. Yoji Arata.

Subject: Structural studies of the antibacterial peptides by NMR spectroscopy.

1994 – 1996
Research Fellowship from the Japan Society for the Promotion of the Science for Young Scientists

1994 – 1998
Ph.D student in Biology, Swiss Federal Institute of Technology, Zürich (ETH, Zürich)

Supervised by Prof. Dr. Kurt Wüthrich

Subject: Expression, Stabilities, and NMR Studies of Hydration of Recombinant Variants of the DNA Binding Domain of Phage 434 Repressor.
Publication

Fernández, C., Szyperski, T., Ono, A., Iwai, H., Tate, S., Kainosho, M. & Wüthrich, K. (1998) NMR with 15N, 13C-doubly-labeled DNA: *Antennapedia* homeodomain complex with a 14mer DNA duplex. *J. Biomol. NMR. in press*